-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcell_level_search.py
executable file
·245 lines (215 loc) · 9.61 KB
/
cell_level_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from operations import *
from torch.autograd import Variable
from genotypes import PRIMITIVES
from genotypes import Genotype
class MixedOp (nn.Module):
def __init__(self, C, stride):
super(MixedOp, self).__init__()
self._ops = nn.ModuleList()
self._ops_latency=[]
for primitive in PRIMITIVES:
op = OPS[primitive](C, stride, False)
latency = OPS_la[primitive][C]
if 'pool' in primitive:
op = nn.Sequential(op, nn.BatchNorm2d(C, affine=False))
self._ops.append(op)
self._ops_latency.append(latency)
def forward(self, x, weights):
return sum(w * op(x) for w, op in zip(weights, self._ops))
def latency(self, weights):
return sum(w *la for w, la in zip(weights, self._ops_latency))
class Cell(nn.Module):
def __init__(self, steps, block_multiplier, prev_prev_fmultiplier,
prev_fmultiplier_down, prev_fmultiplier_same, prev_fmultiplier_up,
filter_multiplier, part=False):
super(Cell, self).__init__()
block_multiplier_d=4
self.C_in = block_multiplier * filter_multiplier
self.C_out = filter_multiplier
self.C_prev_prev = int(prev_prev_fmultiplier * block_multiplier)
self.part_prev_prev = int(prev_prev_fmultiplier * block_multiplier_d)
self._prev_fmultiplier_same = prev_fmultiplier_same
if prev_fmultiplier_down is not None:
self.C_prev_down = int(prev_fmultiplier_down * block_multiplier)
self.preprocess_down = ReLUConvBN(
self.C_prev_down, self.C_out, 1, 1, 0, affine=True)
if part:
self.part_prev_down = int(prev_fmultiplier_down * block_multiplier_d)
self.part_down = ReLUConvBN(
self.part_prev_down, self.C_out, 1, 1, 0, affine=True)
if prev_fmultiplier_same is not None:
self.C_prev_same = int(prev_fmultiplier_same * block_multiplier)
self.preprocess_same = ReLUConvBN(
self.C_prev_same, self.C_out, 1, 1, 0, affine=True)
if part:
self.part_prev_same = int(prev_fmultiplier_same * block_multiplier_d)
self.part_same = ReLUConvBN(
self.part_prev_same, self.C_out, 1, 1, 0, affine=True)
if prev_fmultiplier_up is not None:
self.C_prev_up = int(prev_fmultiplier_up * block_multiplier)
self.preprocess_up = ReLUConvBN(
self.C_prev_up, self.C_out, 1, 1, 0, affine=True)
if part:
self.part_prev_up = int(prev_fmultiplier_up * block_multiplier_d)
self.part_up = ReLUConvBN(
self.part_prev_up, self.C_out, 1, 1, 0, affine=True)
if prev_prev_fmultiplier != -1:
self.pre_preprocess = ReLUConvBN(
self.C_prev_prev, self.C_out, 1, 1, 0, affine=True)
self.part_pre_preprocess = ReLUConvBN(
self.part_prev_prev, self.C_out, 1, 1, 0, affine=True)
self._steps = steps
self.block_multiplier = block_multiplier
self._ops = nn.ModuleList()
for i in range(self._steps):
for j in range(2+i):
stride = 1
if prev_prev_fmultiplier == -1 and j == 0:
op = None
else:
op = MixedOp(self.C_out, stride)
self._ops.append(op)
#self.ReLUConvBN = ReLUConvBN(self.C_in, self.C_out, 1, 1, 0)
def scale_dimension(self, dim, scale):
assert isinstance(dim, int)
return int((float(dim) - 1.0) * scale + 1.0) if dim % 2 else int(dim * scale)
def prev_feature_resize(self, prev_feature, mode):
if mode == 'down':
feature_size_h = self.scale_dimension(prev_feature.shape[2], 0.5)
feature_size_w = self.scale_dimension(prev_feature.shape[3], 0.5)
elif mode == 'up':
feature_size_h = self.scale_dimension(prev_feature.shape[2], 2)
feature_size_w = self.scale_dimension(prev_feature.shape[3], 2)
return F.interpolate(prev_feature, (feature_size_h, feature_size_w), mode='bilinear')
def forward(self, s0, s1_down, s1_same, s1_up, n_alphas, part=False):
if s1_down is not None:
s1_down = self.prev_feature_resize(s1_down, 'down')
if part :
s1_down = self.preprocess_down(s1_down)
else:
s1_down = self.part_down(s1_down)
size_h, size_w = s1_down.shape[2], s1_down.shape[3]
if s1_same is not None:
if part:
s1_same = self.part_same(s1_same)
else:
s1_same = self.preprocess_same(s1_same)
size_h, size_w = s1_same.shape[2], s1_same.shape[3]
if s1_up is not None:
s1_up = self.prev_feature_resize(s1_up, 'up')
if part:
s1_up = self.part_up(s1_up)
else:
s1_up = self.preprocess_up(s1_up)
size_h, size_w = s1_up.shape[2], s1_up.shape[3]
all_states = []
if s0 is not None:
# s0 = self.pre_preprocess(s0)
s0 = F.interpolate(s0, (size_h, size_w), mode='bilinear') if (
s0.shape[2] != size_h) or (s0.shape[3] != size_w) else s0
s0 = self.pre_preprocess(s0) if (s0.shape[1] != self.C_out) else s0
if s1_down is not None:
states_down = [s0, s1_down]
all_states.append(states_down)
if s1_same is not None:
states_same = [s0, s1_same]
all_states.append(states_same)
if s1_up is not None:
states_up = [s0, s1_up]
all_states.append(states_up)
else:
if s1_down is not None:
states_down = [0, s1_down]
all_states.append(states_down)
if s1_same is not None:
states_same = [0, s1_same]
all_states.append(states_same)
if s1_up is not None:
states_up = [0, s1_up]
all_states.append(states_up)
final_concates = []
for states in all_states:
offset = 0
for i in range(self._steps):
new_states = []
for j, h in enumerate(states):
branch_index = offset + j
if self._ops[branch_index] is None:
continue
new_state = self._ops[branch_index](
h, n_alphas[branch_index])
new_states.append(new_state)
s = sum(new_states)
offset += len(states)
states.append(s)
concat_feature = torch.cat(states[-self.block_multiplier:], dim=1)
final_concates.append(concat_feature)
return final_concates
def latency(self, s0, s1_down, s1_same, s1_up, n_alphas):
# if s1_down is not None:
# s1_down = self.prev_feature_resize(s1_down, 'down')
# if part :
# s1_down = self.preprocess_down(s1_down)
# else:
# s1_down = self.part_down(s1_down)
# size_h, size_w = s1_down.shape[2], s1_down.shape[3]
# if s1_same is not None:
# if part:
# s1_same = self.part_same(s1_same)
# else:
# s1_same = self.preprocess_same(s1_same)
# size_h, size_w = s1_same.shape[2], s1_same.shape[3]
# if s1_up is not None:
# s1_up = self.prev_feature_resize(s1_up, 'up')
# if part:
# s1_up = self.part_up(s1_up)
# else:
# s1_up = self.preprocess_up(s1_up)
# size_h, size_w = s1_up.shape[2], s1_up.shape[3]
# all_states = []
if s0 is not None:
# s0 = self.pre_preprocess(s0)
# s0 = F.interpolate(s0, (size_h, size_w), mode='bilinear') if (
# s0.shape[2] != size_h) or (s0.shape[3] != size_w) else s0
# s0 = self.pre_preprocess(s0) if (s0.shape[1] != self.C_out) else s0
if s1_down is not None:
states_down = [s0, s1_down]
all_states.append(states_down)
if s1_same is not None:
states_same = [s0, s1_same]
all_states.append(states_same)
if s1_up is not None:
states_up = [s0, s1_up]
all_states.append(states_up)
else:
if s1_down is not None:
states_down = [0, s1_down]
all_states.append(states_down)
if s1_same is not None:
states_same = [0, s1_same]
all_states.append(states_same)
if s1_up is not None:
states_up = [0, s1_up]
all_states.append(states_up)
latency_list = []
for states in all_states:
offset = 0
for i in range(self._steps):
new_states = []
for j, _ in enumerate(states):
branch_index = offset + j
if self._ops[branch_index] is None:
continue
new_state = self._ops[branch_index].latency(
n_alphas[branch_index])
new_states.append(new_state)
s = sum(new_states)
offset += len(states)
states.append(s)
total_latency = sum(states)
latency_list.append(total_latency)
return latency_list