+
+ Human-Centered Computing and Extended Reality, Friedrich-Alexander University (FAU) Erlangen-Nurnberg,
+ Erlangen, Germany
+ 1
+
+
+ Institute for Distributed Intelligent Systems University of the Bundeswehr Munich Munich, Germany
+ 2
+
+
+ Lehrstuhl fur Graphische Datenverarbeitung (LGDV) Friedrich-Alexander Universität (FAU)
+ Erlangen-Nürnberg Erlangen, Germany
+ 3
+
+
+ Lehrstuhl fur Graphische Datenverarbeitung (LGDV) Friedrich-Alexander Universität (FAU)
+ Erlangen-Nürnberg Erlangen, Germany
+ 4
+
+
+
Abstract
+
+ Novel view synthesis using neural radiance fields (NeRF) is the state-of-the-art technique for generating
+ high-quality images from novel viewpoints. Existing methods require a priori knowledge about extrinsic and
+ intrinsic camera parameters. This limits their applicability to synthetic scenes, or real-world scenarios
+ with the necessity of a preprocessing step. Current research on the joint optimization of camera parameters
+ and NeRF focuses on refining noisy extrinsic camera parameters and often relies on the preprocessing of
+ intrinsic camera parameters. Further approaches are limited to cover only one single camera intrinsic. To
+ address these limitations, we propose a novel end-to-end trainable approach called NeRFtrinsic Four. We
+ utilize Gaussian Fourier features to estimate extrinsic camera parameters and dynamically predict varying
+ intrinsic camera parameters through the supervision of the projection error. Our approach outperforms
+ existing joint optimization methods on LLFF and BLEFF. In addition to these existing datasets, we introduce
+ a new dataset called iFF with varying intrinsic camera parameters. NeRFtrinsic Four is a step forward in
+ joint optimization NeRF-based view synthesis and enables more realistic and flexible rendering in real-world
+ scenarios with varying camera parameters.
+
+
+
+
+ @misc{schieber2023nerftrinsic,
+   title={NeRFtrinsic Four: An End-To-End Trainable NeRF Jointly Optimizing Diverse Intrinsic and Extrinsic Camera Parameters},
+   author={Hannah Schieber and Fabian Deuser and Bernhard Egger and Norbert Oswald and Daniel Roth},
+   year={2023},
+   eprint={2303.09412},
+   archivePrefix={arXiv},
+  primaryClass={cs.CV}
+ }
+
+
+