-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_on_adv_images_freq.py
423 lines (310 loc) · 19.9 KB
/
inference_on_adv_images_freq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import argparse
import logging
import os
from datetime import datetime
import lpips
import monai
import nibabel as nib
import numpy as np
import torch
from monai.data import decollate_batch
from monai.inferers import sliding_window_inference
from monai.metrics import DiceMetric
from monai.metrics import HausdorffDistanceMetric
from monai.transforms import AsDiscrete
from monai.utils.enums import MetricReduction
from config import get_dataset_parser, get_wandb_parser, get_distributed_parser, get_model_args
# from datasets.acdc import get_loader_acdc
from datasets.btcv import get_loader_btcv, get_loader_acdc
from datasets.hecktor import get_loader_hecktor
from datasets.abdomen import get_loader_abdomen
from load_surrogate_models import get_unetr_model, get_swin_unetr_model, get_segresnet_model, get_unet_model
# from mamba_models import get_emunet_3d, get_lmaunet_3d, get_nnmamba_3d, get_segmamba_3d, get_umamba_bot_3d, get_umamba_enc_3d
from attacks.vafa.compression import block_splitting_3d
import torch_dct
import json
from utils.utils import import_args, get_slices
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description='Transfer towards Black-box Domain')
parser1 = get_wandb_parser()
import_args(parser1, parser)
parser2 = get_dataset_parser()
import_args(parser2, parser)
parser3 = get_distributed_parser()
import_args(parser3, parser)
parser4 = get_model_args()
import_args(parser4, parser)
"""
================================================================================================================
=================================== MODE PARAMETERS ============================================
--gen_train_adv_mode (bool): If True, training data is loaded and adversarial versions of training samples are generated.
--gen_val_adv_mode (bool): If True, validation data is loaded and adversarial versions of validation samples are generated.
--test_mode (bool): If True, test validation is loaded and adversarial versions of test samples are generated.
================================================================================================================
"""
parser.add_argument("--gen_train_adv_mode", default=False, type=lambda x: (str(x).lower() == 'true'),
help="if adversarial versions of train samples are to be generated")
parser.add_argument("--gen_val_adv_mode", default=True, type=lambda x: (str(x).lower() == 'true'),
help="if adversarial versions of validation/test samples are to be generated")
parser.add_argument("--test_mode", default=True, type=lambda x: (str(x).lower() == 'true'))
parser.add_argument("--filter", default="low", type=str, help="filter type")
parser.add_argument("--filter_size", default=8, type=int, help="filter size")
parser.add_argument("--lower_limit", default=8, type=int, help="lower limit")
parser.add_argument("--upper_limit", default=16, type=int, help="upper limit")
# model parameters
parser.add_argument('--checkpoint_path', type=str, default='surrogate_weights/')
parser.add_argument('--adv_imgs_dir', type=str, default=r'F:\Code\Projects\AdvTransferMed3D\adversarial_examples\surrogate_unetr_hecktor_2022\data_hecktor\pgd_plus_alpha_0.01_eps_8.0_i_20')
parser.add_argument("--slice_batch_size", default=3, type=int, help="number of slices taken")
args = parser.parse_args()
return args
if __name__ == "__main__":
now_start = datetime.now()
args = get_args()
adv_imgs_dir = args.adv_imgs_dir
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
checkpoint = torch.load(args.checkpoint_path, map_location=device)
checkpoint_epoch = checkpoint["epoch"]
del checkpoint
if args.filter == "band":
log_path = os.path.join(adv_imgs_dir, f"eval_target_model_{args.model_name}_Epoch_{checkpoint_epoch}_freq_{args.filter}_low_{args.lower_limit}_high_{args.upper_limit}.log")
else:
log_path = os.path.join(adv_imgs_dir, f"eval_target_model_{args.model_name}_Epoch_{checkpoint_epoch}_freq_{args.filter}_size_{args.filter_size}.log")
logging.basicConfig(filename=log_path, filemode="a", format="%(name)s → %(levelname)s: %(message)s")
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
if args.filter == "band":
attack_result_file_path = os.path.join(adv_imgs_dir,
f"eval_model_{args.model_name}_epoch{checkpoint_epoch}_freq_{args.filter}_low_{args.lower_limit}_high_{args.upper_limit}.txt")
else:
attack_result_file_path = os.path.join(adv_imgs_dir,
f"eval_model_{args.model_name}_epoch{checkpoint_epoch}_freq_{args.filter}_size_{args.filter_size}.txt")
# create console handler and set level to debug
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
# add console handler to logger
logger.addHandler(ch)
logger.info(f"Frequency Mode: {args.filter} filter of size {args.filter_size} is applied.")
logger.info(f"Attack Result File Path: {attack_result_file_path}")
logger.info(f"Eval logs stored in {log_path}")
logger.info(args)
if args.dataset == "acdc":
loaders = get_loader_acdc(args)
args.out_channels = 4
elif args.dataset == "btcv":
loaders = get_loader_btcv(args)
args.out_channels = 14
elif args.dataset == "hecktor":
loaders = get_loader_hecktor(args)
args.out_channels = 3
elif args.dataset == "abdomen":
loaders = get_loader_abdomen(args)
args.out_channels = 14
else:
raise ValueError(f"Dataset '{args.dataset}' is not implemented.")
logger.info(f"\nDataset = {args.dataset.upper()}")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
load_weights_with_chk_path = True
if args.model_name == "unetr":
model = get_unetr_model(in_channels=args.in_channels,
num_classes=args.out_channels,
img_size=(args.roi_x, args.roi_y, args.roi_z),
feature_size=args.feature_size,
hidden_size=args.hidden_size,
mlp_dim=args.mlp_dim,
num_heads=args.num_heads,
proj_type=args.pos_embed,
norm_name=args.norm_name,
conv_block=True,
res_block=True,
dropout_rate=0.0)
elif args.model_name == "swin_unetr":
model = get_swin_unetr_model(num_classes=args.out_channels, in_channels=args.in_channels,
img_size=(args.roi_x, args.roi_y, args.roi_z),
feature_size=48,
drop_rate=0.0,
)
elif args.model_name == "unet":
model = get_unet_model(num_classes=args.out_channels, in_channels=args.in_channels, dropout_prob=0.0)
elif args.model_name == "segresnet":
model = get_segresnet_model(num_classes=args.out_channels, in_channels=args.in_channels, dropout_prob=0.0)
elif args.model_name == "emunet":
model = get_emunet_3d(input_channels=args.in_channels, out_channels=args.out_channels, dropout_rate=0.0)
elif args.model_name == "lmaunet":
model = get_lmaunet_3d(input_channels=args.in_channels, num_classes=args.out_channels)
elif args.model_name == "nnmamba":
model = get_nnmamba_3d(input_channels=args.in_channels, num_classes=args.out_channels)
elif args.model_name == "segmamba":
model = get_segmamba_3d(input_channels=args.in_channels, num_classes=args.out_channels, dropout_rate=0.0)
elif args.model_name == "umamba_bot":
model = get_umamba_bot_3d(input_channels=args.in_channels, num_classes=args.out_channels)
elif args.model_name == "umamba_enc":
model = get_umamba_enc_3d(input_channels=args.in_channels, num_classes=args.out_channels)
else:
raise ValueError("Unsupported model " + str(args.model_name))
if load_weights_with_chk_path:
# check if checkpoint file exists, if not then load model from scratch
if not os.path.isfile(args.checkpoint_path):
logger.info(f"Model: {args.model_name} loading weights are not loaded from {args.checkpoint_path} as file does not exist.")
else:
logger.info(f"Model: {args.model_name} loading weights from {args.checkpoint_path}")
checkpoint = torch.load(args.checkpoint_path, map_location=device)
msg = model.load_state_dict(checkpoint["model_state_dict"],
strict="False") if "model_state_dict" in checkpoint.keys() else model.load_state_dict(
checkpoint["state_dict"], strict="False")
logger.info(msg)
model.eval()
model.to(device)
loss_fn_alex = lpips.LPIPS(net='alex') # best forward scores
loss_fn_vgg = lpips.LPIPS(net='vgg') # closer to "traditional" perceptual loss, when used for optimization
loss_fn = monai.losses.DiceCELoss(to_onehot_y=True, softmax=True, squared_pred=True, smooth_nr=0.0, smooth_dr=1e-6)
transform_true_label = AsDiscrete(to_onehot=args.out_channels, n_classes=args.out_channels)
transform_pred_label = AsDiscrete(argmax=True, to_onehot=args.out_channels, n_classes=args.out_channels)
dice_score_monai = DiceMetric(include_background=True, reduction=MetricReduction.MEAN, get_not_nans=True)
hd95_score_monai = HausdorffDistanceMetric(include_background=True, distance_metric='euclidean', percentile=95, directed=False,
reduction=MetricReduction.MEAN, get_not_nans=True)
dice_organ_dict_clean = {}
dice_organ_dict_adv = {}
hd95_organ_dict_clean = {}
hd95_organ_dict_adv = {}
lpips_alex_dict = {}
voxel_success_rate_list = []
logger.info("\n\n")
slice_batch_size = args.slice_batch_size
for i, batch in enumerate(loaders):
# if i >0: break
# get clean images
val_inputs, val_labels = (batch["image"].cuda(), batch["label"].cuda()) # Image [Min,Max]=[0,1]
img_name = os.path.basename(batch["image"].meta["filename_or_obj"][0])
lbl_name = os.path.basename(batch["label"].meta["filename_or_obj"][0])
## load adv-image
adv_val_inputs_path = os.path.join(adv_imgs_dir, "imagesTsAdv", f"adv_{img_name}")
logger.info(f"Image Name = {img_name}\nLoading Adversarial Image :{adv_val_inputs_path}")
adv_val_inputs = nib.load(adv_val_inputs_path).get_fdata() / 255.0 # Image Shape=[H,W,D] [Min,Max]=[0,1]
adv_val_inputs = torch.tensor(adv_val_inputs).unsqueeze(0).unsqueeze(0).to(device,
dtype=torch.float32) # Image Shape=[B,C,H,W,D] [Min,Max]=[0,1]
# TO DO: think about overlaping regions
# inference on whole volume of input data
with torch.no_grad():
# get the grad image by comuting the difference between the clean and adv images
num_slices = 1 #args.slice_batch_size
roi_size = (96, 96, 96)
grad_img = adv_val_inputs - val_inputs
input_shape = val_inputs.shape
slices = get_slices(input_shape, roi_size)
grad_input = torch.zeros_like(val_inputs).to(device)
for start in range(0, len(slices), num_slices):
stop = min(start + num_slices, len(slices))
grad_slice_data = [grad_img[0, 0][slices[j]].unsqueeze(0).unsqueeze(1) for j in range(start, stop)] # [B, 1, 96, 96, 96]
grad_slice_data = torch.cat(grad_slice_data, 0) if len(grad_slice_data) > 1 else grad_slice_data[0]
# # the slide_data is of shape [B, 1, 96, 96, 96]
grad_freq_slice_data = torch_dct.dct_3d(grad_slice_data)
mask = torch.zeros_like(grad_freq_slice_data)
if args.filter == "low":
mask[:, :, :args.filter_size, :args.filter_size, :args.filter_size] = 1
masked_grad_freq_slice_data = torch.mul(grad_freq_slice_data, mask)
new_grad_slice_data = torch_dct.idct_3d(masked_grad_freq_slice_data)
elif args.filter == "high":
mask[:, :, args.filter_size:, args.filter_size:, args.filter_size:] = 1
masked_grad_freq_slice_data = torch.mul(grad_freq_slice_data, mask)
new_grad_slice_data = torch_dct.idct_3d(masked_grad_freq_slice_data)
elif args.filter == "band":
low_limit = args.lower_limit
high_limit = args.upper_limit
mask[:, :, low_limit:high_limit, low_limit:high_limit, low_limit:high_limit] = 1
masked_grad_freq_slice_data = torch.mul(grad_freq_slice_data, mask)
new_grad_slice_data = torch_dct.idct_3d(masked_grad_freq_slice_data)
else:
mask = torch.ones_like(grad_freq_slice_data)
masked_grad_freq_slice_data = torch.mul(grad_freq_slice_data, mask)
new_grad_slice_data = torch_dct.idct_3d(masked_grad_freq_slice_data)
# mask[:, :, :32, :32, :32] = 1
# masked_grad_freq_slice_data = torch.mul(grad_freq_slice_data, mask)
# new_grad_slice_data = torch_dct.idct_3d(masked_grad_freq_slice_data)
# compute the magnitude in difference between freq_slice_data and new_grad_slice_data
# print(sum(torch.abs(grad_slice_data - new_grad_slice_data)))
# new_grad_slice_data = grad_slice_data
for counter, j in enumerate(range(start, stop)): grad_input[0, 0][slices[j]] = new_grad_slice_data[counter].unsqueeze(0)
adv_val_inputs = torch.clamp(val_inputs + grad_input, 0, 1)
val_logits = sliding_window_inference(val_inputs, (96, 96, 96), slice_batch_size, model, overlap=args.infer_overlap)
val_scores = torch.softmax(val_logits, 1).cpu().numpy()
val_labels_clean = np.argmax(val_scores, axis=1).astype(np.uint8)
# inference on adversarial inputs
val_logits_adv = sliding_window_inference(adv_val_inputs, (96, 96, 96), slice_batch_size, model, overlap=args.infer_overlap)
val_scores_adv = torch.softmax(val_logits_adv, 1).cpu().numpy()
val_labels_adv = np.argmax(val_scores_adv, axis=1).astype(np.uint8)
# ture labels
val_labels = val_labels.cpu().numpy().astype(np.uint8)[0]
## Ground Truth
val_true_labels_list = decollate_batch(batch["label"].cuda())
val_true_labels_convert = [transform_true_label(val_label_tensor) for val_label_tensor in val_true_labels_list]
## Clean Predictions
val_clean_pred_labels_list = decollate_batch(val_logits)
val_clean_pred_labels_convert = [transform_pred_label(val_pred_tensor) for val_pred_tensor in val_clean_pred_labels_list]
## Adv Predictions
val_adv_pred_labels_list = decollate_batch(val_logits_adv)
val_adv_pred_labels_convert = [transform_pred_label(val_pred_tensor) for val_pred_tensor in val_adv_pred_labels_list]
## MONAI DICE Score
dice_clean = dice_score_monai(y_pred=val_clean_pred_labels_convert, y=val_true_labels_convert)
dice_adv = dice_score_monai(y_pred=val_adv_pred_labels_convert, y=val_true_labels_convert)
dice_organ_dict_clean[img_name] = dice_clean[0].tolist()
dice_organ_dict_adv[img_name] = dice_adv[0].tolist()
## MONAI HD95 Score
hd95_score_clean = hd95_score_monai(y_pred=val_clean_pred_labels_convert, y=val_true_labels_convert)
hd95_score_adv = hd95_score_monai(y_pred=val_adv_pred_labels_convert, y=val_true_labels_convert)
hd95_organ_dict_clean[img_name] = hd95_score_clean[0].tolist()
hd95_organ_dict_adv[img_name] = hd95_score_adv[0].tolist()
img = val_inputs[0, 0].permute(2, 0, 1).unsqueeze(1).float().cpu()
adv = adv_val_inputs[0, 0].permute(2, 0, 1).unsqueeze(1).float().cpu()
lpips_alex_dict[img_name] = 1 - loss_fn_alex((2 * img - 1), (2 * adv - 1)).view(-1, ).mean().item()
voxel_suc_rate = (val_labels_clean != val_labels_adv).sum() / np.prod(val_labels_clean.shape)
voxel_success_rate_list.append(voxel_suc_rate)
logger.info(f"Adv Attack Success Rate (voxel): {round(voxel_suc_rate * 100, 3)} (%)")
logger.info(
f"Mean Organ Dice (Clean): {round(np.nanmean(dice_organ_dict_clean[img_name]) * 100, 2):.2f} (%) Mean Organ HD95 (Clean): {round(np.nanmean(hd95_organ_dict_clean[img_name]), 2)}")
logger.info(
f"Mean Organ Dice (Adv) : {round(np.nanmean(dice_organ_dict_adv[img_name]) * 100, 2):.2f} (%) Mean Organ HD95 (Adv) : {round(np.nanmean(hd95_organ_dict_adv[img_name]), 2)}")
logger.info(f"LPIPS_Alex: {round(lpips_alex_dict[img_name], 4)}")
logger.info("\n\n")
dice_clean_all = []
dice_adv_all = []
for key in dice_organ_dict_clean.keys(): dice_clean_all.append(np.nanmean(dice_organ_dict_clean[key]))
for key in dice_organ_dict_adv.keys(): dice_adv_all.append(np.nanmean(dice_organ_dict_adv[key]))
hd95_clean_all = []
hd95_adv_all = []
for key in hd95_organ_dict_clean.keys(): hd95_clean_all.append(np.nanmean(hd95_organ_dict_clean[key]))
for key in hd95_organ_dict_adv.keys(): hd95_adv_all.append(np.nanmean(hd95_organ_dict_adv[key]))
logger.info(f"\n Model = {args.model_name.upper()} \n")
logger.info(" Model Weights Path:", )
logger.info(f"\n Dataset = {args.dataset.upper()}")
logger.info(f"\n Path of Adversarial Images = {adv_imgs_dir}")
logger.info("\n Attack Info:")
logger.info('\n')
logger.info(f" Overall Mean Dice (Clean): {round(np.mean(dice_clean_all) * 100, 3):0.3f} (%)")
logger.info(f" Overall Mean Dice (Adv) : {round(np.mean(dice_adv_all) * 100, 3):0.3f} (%)")
logger.info('\n')
logger.info(f" Overall Mean HD95 (Clean): {round(np.mean(hd95_clean_all), 3):0.3f}")
logger.info(f" Overall Mean HD95 (Adv) : {round(np.mean(hd95_adv_all), 3):0.3f}")
lpips_alex_all = []
for key in lpips_alex_dict.keys(): lpips_alex_all.append(lpips_alex_dict[key])
logger.info('\n')
logger.info(f" Overall LPIPS_Alex: {round(np.mean(lpips_alex_all), 4):0.4f}")
now_end = datetime.now()
logger.info(f'\n Time & Date = {now_end.strftime("%I:%M %p")} , {now_end.strftime("%d_%b_%Y")}\n')
attack_stats = {"Clean Dice": np.mean(dice_clean_all), "Adv Dice": np.mean(dice_adv_all),
"Clean HD95": np.mean(hd95_clean_all), "Adv HD95": np.mean(hd95_adv_all),
"LPIPS_Alex": np.mean(lpips_alex_all), }
with open(attack_result_file_path, mode="a", encoding="utf-8") as f:
f.write(json.dumps(attack_stats) + "\n")
duration = now_end - now_start
duration_in_s = duration.total_seconds()
days = divmod(duration_in_s, 86400) # Get days (without [0]!)
hours = divmod(days[1], 3600) # Use remainder of days to calc hours
minutes = divmod(hours[1], 60) # Use remainder of hours to calc minutes
seconds = divmod(minutes[1], 1) # Use remainder of minutes to calc seconds
logger.info(
f" Total Time => {int(days[0])} Days : {int(hours[0])} Hours : {int(minutes[0])} Minutes : {int(seconds[0])} Seconds \n\n")
logger.info(f"{'#' * 130}\n{'#' * 130}\n")
logger.info(" Done!\n")
logger.info('\n')
logger.info(f" Overall Mean Dice (Clean): {round(np.mean(dice_clean_all) * 100, 3):0.3f} (%), Overall Mean Dice (Adv) : {round(np.mean(dice_adv_all) * 100, 3):0.3f} (%)")
logger.info(f" Overall Mean HD95 (Clean): {round(np.mean(hd95_clean_all), 3):0.3f}, Overall Mean HD95 (Adv) : {round(np.mean(hd95_adv_all), 3):0.3f}")