-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_surrogate_models.py
128 lines (106 loc) · 3.76 KB
/
load_surrogate_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from collections import OrderedDict
import numpy as np
import torch
import logging
from monai.networks.nets import UNETR
from monai.networks.nets import SwinUNETR
from monai.networks.nets import SegResNet
from monai.networks.nets import UNet
def get_unetr_model(num_classes, in_channels=1, img_size=(96, 96, 96),
feature_size=16, hidden_size=768, mlp_dim=3072, num_heads=12,
proj_type='conv', norm_name='instance', res_block=True,
conv_block=True,
dropout_rate=0.0
):
model = UNETR(
in_channels=in_channels,
out_channels=num_classes,
img_size=img_size,
feature_size=feature_size,
hidden_size=hidden_size,
mlp_dim=mlp_dim,
num_heads=num_heads,
proj_type=proj_type,
norm_name=norm_name,
res_block=res_block,
conv_block=conv_block,
dropout_rate=dropout_rate,
spatial_dims=len(img_size),
)
return model
def get_swin_unetr_model(num_classes, in_channels=1, img_size=(96, 96, 96), feature_size=48,
drop_rate=0.0, dropout_path_rate=0.0):
"""
Define SwinUNETR model arguments
def __init__(
self,
img_size: Sequence[int] | int,
in_channels: int,
out_channels: int,
depths: Sequence[int] = (2, 2, 2, 2),
num_heads: Sequence[int] = (3, 6, 12, 24),
feature_size: int = 24,
norm_name: tuple | str = "instance",
drop_rate: float = 0.0,
attn_drop_rate: float = 0.0,
dropout_path_rate: float = 0.0,
normalize: bool = True,
use_checkpoint: bool = False,
spatial_dims: int = 3,
downsample="merging",
use_v2=False,
) -> None:
"""
model = SwinUNETR(
in_channels=in_channels,
out_channels=num_classes,
img_size=img_size,
feature_size=feature_size,
drop_rate=drop_rate,
dropout_path_rate=dropout_path_rate,
use_checkpoint=True,
spatial_dims=len(img_size),
)
return model
def get_segresnet_model(num_classes, in_channels=1, img_size=(96, 96, 96), dropout_prob=0.0):
model = SegResNet(
in_channels=in_channels,
out_channels=num_classes,
blocks_down=[1, 2, 2, 4],
blocks_up=[1, 1, 1],
init_filters=32,
dropout_prob=dropout_prob,
spatial_dims=len(img_size),
)
return model
def get_unet_model(in_channels=1,
num_classes=14, dropout_prob=0.0,
):
model = UNet(
spatial_dims=3,
in_channels=in_channels,
out_channels=num_classes,
channels=(16, 32, 64, 128, 256),
strides=(2, 2, 2, 2),
num_res_units=2,
dropout=dropout_prob,
)
return model
if __name__ == '__main__':
# Load all supreme models
model = get_unet_model(num_classes=14)
# print total number of parameters
print(sum(p.numel() for p in model.parameters()))
print(f"Total number of parameters UNet: {sum(p.numel() for p in model.parameters())}")
model = get_segresnet_model(num_classes=14)
# print total number of parameters
print(sum(p.numel() for p in model.parameters()))
print(f"Total number of parameters SegResNet: {sum(p.numel() for p in model.parameters())}")
model = get_swin_unetr_model(num_classes=14)
# print total number of parameters
print(sum(p.numel() for p in model.parameters()))
print(f"Total number of parameters SwinUNETR: {sum(p.numel() for p in model.parameters())}")
model = get_unetr_model(num_classes=14)
# print total number of parameters
print(sum(p.numel() for p in model.parameters()))
print(f"Total number of parameters UNETR: {sum(p.numel() for p in model.parameters())}")