forked from ITCoders/Human-detection-and-Tracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
152 lines (133 loc) · 4.62 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#include "opencv2/objdetect.hpp"
#include <opencv2/core/core.hpp>
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/face.hpp"
#include <string>
#include <iostream>
using namespace std;
using namespace cv;
String face_cascade1_name = "face_cascades/haarcascade_profileface.xml";
CascadeClassifier face_cascade1;
Ptr<face::FaceRecognizer> recognizer = face::createLBPHFaceRecognizer();
vector<Rect> detect_faces( Mat frame);
Mat detect_people( Mat frame);
Mat draw_faces(Mat frame1, vector<Rect> faces);
int* recognize_face(Mat frame, vector<Rect> faces);
Mat put_label_on_face(Mat frame,vector<Rect> faces,int* label);
int main (int argc, const char * argv[])
{
VideoCapture cap(argv[1]);
recognizer->load("model.yaml");
if (!cap.isOpened()) /*checking whether video file is read successfully*/
{
cout << "Cannot open the video file" << endl;
return -1;
}
/*throwing error when any cascade file is unable to load*/
if( !face_cascade1.load( face_cascade1_name ) )
{
printf("--(!)Error loading face cascade1\n"); return -1;
}
Mat frame,frame1,frame2;
vector<Rect> faces;
int *label;
while (true)
{
cap >> frame;
if (frame.empty())
break;
int height;
height=((frame.size().height)*800)/frame.size().width;
resize(frame, frame, Size(800, height));
frame1=detect_people(frame);
faces=detect_faces(frame);
frame2=draw_faces(frame1, faces); /*draw circle around faces*/
label=recognize_face(frame,faces);
put_label_on_face(frame,faces,label);
imshow("human_detection and face_detection", frame);
waitKey(1);
}
return 0;
}
Mat detect_people( Mat frame)
{
HOGDescriptor hog;
hog.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector());
vector<Rect> detected, detected_filtered;
hog.detectMultiScale(frame, detected, 0, Size(8,8), Size(16,16), 1.06, 2);
size_t i, j;
/*checking for the distinctly detected human in a frame*/
for (i=0; i<detected.size(); i++)
{
Rect r = detected[i];
for (j=0; j<detected.size(); j++)
if (j!=i && (r & detected[j]) == r)
break;
if (j== detected.size())
detected_filtered.push_back(r);
}
/*for each distinctly detected human draw rectangle around it*/
for (i=0; i<detected_filtered.size(); i++)
{
Rect r = detected_filtered[i];
r.x += cvRound(r.width*0.1);
r.width = cvRound(r.width*0.8);
r.y += cvRound(r.height*0.07);
r.height = cvRound(r.height*0.8);
rectangle(frame, r.tl(), r.br(), Scalar(0,0,255), 2);
}
return frame;
}
vector<Rect> detect_faces( Mat frame)
{
vector<Rect> faces;
Mat frame_gray;
cvtColor( frame, frame_gray, COLOR_BGR2GRAY ); /*converting input image in grayscale form*/
//equalizeHist( frame_gray, frame_gray );
/*Detecting faces*/
face_cascade1.detectMultiScale( frame_gray, faces, 1.1, 2, 0|CASCADE_SCALE_IMAGE, Size(20, 20) );
return faces;
}
Mat draw_faces(Mat frame1, vector<Rect> faces)
{
for ( size_t i = 0; i < faces.size(); i++ )
{
/*Drawing rectangle around faces*/
rectangle(frame1, Point(faces[i].x, faces[i].y), Point(faces[i].x + faces[i].width, faces[i].y + faces[i].height), Scalar(0, 255, 0), 2, LINE_8, 0);
}
return frame1;
}
int* recognize_face(Mat frame, vector<Rect> faces)
{
int a;
double b;
static int predict_label[100];
double predict_conf[100];
Mat frame_original_grayscale;
for ( size_t i = 0; i < faces.size(); i++ )
{
cvtColor( frame, frame_original_grayscale, COLOR_BGR2GRAY ); /*converting frame to grayscale*/
//equalizeHist(frame_original_grayscale,frame_original_grayscale);
/*recognizing faces to predict label and confidence factor*/
recognizer->predict(frame_original_grayscale, a,b);
predict_label[i]=a;
predict_conf[i]=b;
cout << "label="<<a <<endl<< "conf="<<b << endl;
}
return predict_label;
}
Mat put_label_on_face(Mat frame,vector<Rect> faces,int* label)
{
for ( size_t j = 0; j < faces.size(); j++ )
{
/*converting integer to string*/
stringstream ss;
ss << label[j];
string str_label = ss.str();
/*writing label on the image frame*/
/*putText(InputOutputArray img, const String& text, Point org, int fontFace, double fontScale, Scalar color, int thickness=1, int lineType=LINE_8, bool bottomLeftOrigin=false )*/
putText(frame, str_label, Point(faces[j].x, faces[j].y), FONT_HERSHEY_SIMPLEX,1, Scalar(255,255,255), 2);
}
return frame;
}