From 4bb88e5991443fccec6b288953ed593fd2637a86 Mon Sep 17 00:00:00 2001 From: Benedikt Kloss Date: Mon, 12 Feb 2024 10:10:17 -0500 Subject: [PATCH] Initial commit for randomized SVD. --- src/ITensorNetworks.jl | 2 + src/linalg/rsvd_aux.jl | 276 ++++++++++++++++++++++++++++++++++++++ src/linalg/rsvd_linalg.jl | 87 ++++++++++++ test/test_rsvd.jl | 100 ++++++++++++++ 4 files changed, 465 insertions(+) create mode 100644 src/linalg/rsvd_aux.jl create mode 100644 src/linalg/rsvd_linalg.jl create mode 100644 test/test_rsvd.jl diff --git a/src/ITensorNetworks.jl b/src/ITensorNetworks.jl index d4c993a2..e5357c23 100644 --- a/src/ITensorNetworks.jl +++ b/src/ITensorNetworks.jl @@ -105,6 +105,8 @@ include("tensornetworkoperators.jl") include(joinpath("ITensorsExt", "itensorutils.jl")) include(joinpath("Graphs", "abstractgraph.jl")) include(joinpath("Graphs", "abstractdatagraph.jl")) +include(joinpath("linalg","rsvd_linalg.jl")) +include(joinpath("linalg","rsvd_aux.jl")) include(joinpath("solvers", "eigsolve.jl")) include(joinpath("solvers", "exponentiate.jl")) include(joinpath("solvers", "dmrg_x.jl")) diff --git a/src/linalg/rsvd_aux.jl b/src/linalg/rsvd_aux.jl new file mode 100644 index 00000000..149e699c --- /dev/null +++ b/src/linalg/rsvd_aux.jl @@ -0,0 +1,276 @@ +function get_column_space(A::Vector{<:ITensor}, lc::ITensors.QNIndex, rc::ITensors.QNIndex) + #gets non-zero blocks in rc by sticking in lc and contracting through + viable_sectors = Vector{Pair{QN,Int64}}() + for s in space(lc) + qn = first(s) + trial = dag(randomITensor(qn, lc)) + adtrial = foldl(*, A; init=trial) + nnzblocks(adtrial) == 0 && continue + @assert nnzblocks(adtrial) == 1 + i = Int(nzblocks(adtrial)[1]) + thesector = space(only(inds(adtrial)))[i] + push!(viable_sectors, thesector) + end + return viable_sectors +end + +function get_column_space(A::Vector{<:ITensor}, lc::Index{Int64}, rc::Index{Int64}) + #gets non-zero blocks in rc by sticking in lc and contracting through + viable_sectors = Vector{Pair{Int64,Int64}}() + !any(isempty.(A)) && (viable_sectors = [dim(rc) => dim(rc)]) + return viable_sectors +end + +# remove since code passes through vector of ITensors +#= +function get_column_space(A::ITensor, lc::Index,rc::Index) + #gets non-zero blocks in rc by sticking in lc and contracting through + viable_sectors=Vector{Pair{QN,Int64}}() + ind_loc=only(findall(isequal(rc),inds(A))) + unique_qns=unique(qns(A,ind_loc)) + for s in space(rc) + qn = first(s) + qn in unique_qns || continue + push!(viable_sectors, s) + end + return viable_sectors +end +=# + +qns(t::ITensor) = qns(collect(eachnzblock(t)), t) +qns(t::ITensor, i::Int) = qns(collect(eachnzblock(t)), t, i) + +function qns(bs::Vector{Block{n}}, t::ITensor) where {n} + return [qns(b, t) for b in bs] +end + +function qns(bs::Vector{Block{n}}, t::ITensor, i::Int) where {n} + return [qns(b, t)[i] for b in bs] +end + +function qns(b::Block{n}, t::ITensor) where {n} + theqns = QN[] + for i in 1:order(t) + theb = getindex(b, i) + theind = inds(t)[i] + push!(theqns, ITensors.qn(space(theind), Int(theb))) + end + return theqns +end + +#QN version +function build_guess_matrix( + eltype::Type{<:Number}, ind, sectors::Vector{Pair{QN,Int64}}, n::Int, p::Int +) + aux_spaces = Pair{QN,Int64}[] + for s in sectors + thedim = last(s) + qn = first(s) + en = min(n + p, thedim) + push!(aux_spaces, Pair(qn, en)) + end + aux_ind = Index(aux_spaces; dir=dir(ind)) + M = randomITensor(eltype, dag(ind), aux_ind) #defaults to zero flux + @assert nnzblocks(M) != 0 + return M +end + +#non-QN version +function build_guess_matrix( + eltype::Type{<:Number}, ind, sectors::Vector{Pair{Int,Int64}}, n::Int, p::Int +) + thedim = dim(ind) + en = min(n + p, thedim) + aux_ind = Index(en) + M = randomITensor(eltype, ind, aux_ind) + return M +end + +#non-QN version +function build_guess_matrix( + eltype::Type{<:Number}, ind, sectors::Vector{Pair{Int,Int}}, ndict::Dict; +) ##given ndict, sectors is not necessary here + thedim = dim(ind) + en = min(ndict[space(ind)], thedim) + aux_ind = Index(en) + M = randomITensor(eltype, ind, aux_ind) + return M +end + +#QN version +function build_guess_matrix( + eltype::Type{<:Number}, ind, sectors::Vector{Pair{QN,Int64}}, ndict::Dict; +) ##given ndict, sectors is not necessary here + aux_spaces = Pair{QN,Int64}[] + for s in sectors + thedim = last(s) + qn = first(s) + en = min(ndict[qn], thedim) + push!(aux_spaces, Pair(qn, en)) + end + aux_ind = Index(aux_spaces; dir=dir(ind)) + M = randomITensor(eltype, dag(ind), aux_ind) + @assert nnzblocks(M) != 0 + return M +end + +# non-QN version +function init_guess_sizes(cind, sectors::Nothing, n::Int, rule) + thedim = dim(cind) + ndict = Dict{Int64,Int64}() + ndict[thedim] = min(thedim, rule(n)) + return ndict +end + +# QN version +function init_guess_sizes(cind, sectors::Vector{Pair{QN,Int64}}, n::Int, rule) + @assert hasqns(cind) + ndict = Dict{QN,Int64}() + for s in sectors + thedim = last(s) + qn = first(s) + ndict[qn] = min(rule(n), thedim) + end + return ndict +end + +function increment_guess_sizes(ndict::Dict{QN,Int64}, n_inc::Int, rule) + for key in keys(ndict) + ndict[key] = ndict[key] + rule(n_inc) + end + return ndict +end + +function increment_guess_sizes(ndict::Dict{Int64,Int64}, n_inc::Int, rule) + for key in keys(ndict) + ndict[key] = ndict[key] + rule(n_inc) + end + return ndict +end + +function approx_the_same(o, n; abs_eps=1e-12, rel_eps=1e-6) + absdev = abs.(o .- n) + reldev = abs.((o .- n) ./ n) + abs_conv = absdev .< abs_eps + rel_conv = reldev .< rel_eps + return all(abs_conv .|| rel_conv) +end + +function is_converged_block(o, n; svd_kwargs...) + maxdim = get(svd_kwargs, :maxdim, Inf) + if length(o) != length(n) + return false + else + r = min(maxdim, length(o)) + #ToDo: Pass kwargs? + return approx_the_same(o[1:r], n[1:r]) + end +end + +function is_converged!(ndict, old_fact, new_fact; n_inc=1, has_qns=true, svd_kwargs...) + oU, oS, oV = old_fact.U, old_fact.S, old_fact.V + nU, nS, nV = new_fact.U, new_fact.S, new_fact.V + + # check for non-existing tensor + (isempty(nS) && isempty(oS)) && return true + (isempty(nS) && !(isempty(oS))) && warning("New randomized SVD is empty + while prior iteration was not. It is very unlikely that this is correct. + Exiting.") + + theflux = flux(nS) + oldflux = flux(oS) + + if !has_qns + if norm(oS) == 0.0 + if norm(nS) == 0.0 + return true + else + ndict[first(keys(ndict))] *= 2 + return false + end + end + end + + maxdim = get(svd_kwargs, :maxdim, Inf) + # deal with non QN tensors first and a simple case for blocksparse + os = sort(storage(oS); rev=true) + ns = sort(storage(nS); rev=true) + if length(os) >= maxdim && length(ns) >= maxdim + conv_global = approx_the_same(os[1:maxdim], ns[1:maxdim]) + elseif length(os) != length(ns) + conv_global = false + else + r = length(ns) + conv_global = approx_the_same(os[1:r], ns[1:r]) #shouldn't this error for os shorter than ns? + end + if !hasqns(oS) + if conv_global == false + #ndict has only one key + ndict[first(keys(ndict))] *= 2 + end + return conv_global + end + conv_bool_total = true + + # deal with QN tensors now + ncrind = commonind(nS, nV) + ocrind = commonind(oS, oV) + n_ind_loc = only(findall(isequal(ncrind), inds(nS))) + nqns = first.(space(ncrind)) + oqns = first.(space(ocrind)) + + for qn in keys(ndict) + if !(qn in nqns) && !(qn in oqns) + conv_bool = true + continue + #qn + elseif !(qn in nqns) + ndict[qn] *= 2 + conv_bool_total = false + warn("QN was in old factorization but not in new one, this shouldn't happen often!") + continue + elseif !(qn in oqns) + ndict[qn] *= 2 + conv_bool_total = false + continue + end + #qn present in both old and new factorization, grab singular values to compare + ovals = get_qnblock_vals(qn, ocrind, oS) + nvals = get_qnblock_vals(qn, ncrind, nS) + conv_bool = is_converged_block(collect(ovals), collect(nvals); svd_kwargs...) + if conv_bool == false + ndict[qn] *= 2 + end + conv_bool_total *= conv_bool + end + if conv_bool_total == true + @assert conv_global == true + else + if conv_global == true + println( + "Subspace expansion, rand. svd: singular vals converged globally, but may not be optimal, doing another iteration", + ) + end + end + return conv_bool_total::Bool +end + +"""Extracts (singular) values in block associated with `qn` in `ind`` from diagonal ITensor `svalt``.""" +function get_qnblock_vals(qn, ind, svalt) + s = space(ind) + ind_loc = only(findall(isequal(ind), inds(svalt))) + theblocks = eachnzblock(svalt) + blockdict = Int.(getindex.(theblocks, ind_loc)) + qnindtoblock = Dict(collect(values(blockdict)) .=> collect(keys(blockdict))) #refactor + + qnind = findfirst((first.(s)) .== [qn]) # refactor + theblock = qnindtoblock[qnind] + vals = diag(svalt[theblock]) + + return vals +end + +"""Check that the factorization isn't empty. / both empty""" +function _sanity_checks() + return nothing +end diff --git a/src/linalg/rsvd_linalg.jl b/src/linalg/rsvd_linalg.jl new file mode 100644 index 00000000..221e5840 --- /dev/null +++ b/src/linalg/rsvd_linalg.jl @@ -0,0 +1,87 @@ +function prepare_rsvd(A::Vector{ITensor}, linds::Vector{<:Index}) + if length(A) == 1 + rinds = uniqueinds(only(A), linds) + else + rinds = uniqueinds(A[end], unioninds(A[1:(end - 1)]...)) + end + CL = combiner(linds) + CR = combiner(rinds) + AC = copy(A) + AC[1] = CL * first(AC) + AC[end] = last(AC) * CR + cL = combinedind(CL) + cR = combinedind(CR) + return AC, (CL, cL), (CR, cR) +end + +function rsvd_iterative(A::ITensor, linds::Vector{<:Index}; svd_kwargs...) + return rsvd_iterative([A], linds; svd_kwargs...) +end + +# ToDo: not type stable for empty factorizations. +function rsvd_iterative(A::Vector{ITensor}, linds::Vector{<:Index}; svd_kwargs...) + AC, (CL, cL), (CR, cR) = prepare_rsvd(A, linds) + scalar_type = eltype(first(AC)) + nonzero_sectors = get_column_space(AC, cL, cR) + isempty(nonzero_sectors) && return nothing, nothing, nothing + + n_init = 1 + p_rule(n) = 2 * n + ndict = init_guess_sizes(cR, nonzero_sectors, n_init, p_rule) + + M = build_guess_matrix(scalar_type, cR, nonzero_sectors, ndict) + fact, Q = rsvd_core(AC, M; svd_kwargs...) + n_inc = 1 + ndict = increment_guess_sizes(ndict, n_inc, p_rule) + new_fact = nothing + while true + M = build_guess_matrix(scalar_type, cR, nonzero_sectors, ndict) + new_fact, Q = rsvd_core(AC, M; svd_kwargs...) + isnothing(Q) && return nothing, nothing, nothing + if is_converged!(ndict, fact, new_fact; n_inc, has_qns=any(hasqns.(AC)), svd_kwargs...) + break + else + fact = new_fact + end + end + vals = diag(array(new_fact.S)) + (length(vals) == 1 && vals[1]^2 ≤ get(svd_kwargs, :cutoff, 0.0)) && + return nothing, nothing, nothing + return dag(CL) * Q * new_fact.U, new_fact.S, new_fact.V * dag(CR) +end + +function rsvd(A::ITensor, linds::Vector{<:Index}, n::Int, p::Int; svd_kwargs...) + return rsvd([A], linds, n, p; svd_kwargs...) +end + +function rsvd(A::Vector{<:ITensor}, linds::Vector{<:Index}, n::Int, p::Int; svd_kwargs...) + AC, (CL, cL), (CR, cR) = prepare_rsvd(A, linds) + nonzero_sectors = get_column_space(AC, cL, cR) + isempty(nonzero_sectors) && return nothing, nothing, nothing + M = build_guess_matrix(eltype(first(AC)), cR, nonzero_sectors, n, p) + fact, Q = rsvd_core(AC, M; svd_kwargs...) + return dag(CL) * Q * fact.U, fact.S, fact.V * dag(CR) +end + +function rsvd_core(AC::Vector{ITensor}, M; svd_kwargs...) + @assert !isnothing(commonind(last(AC), M)) + Q = foldr(*, AC; init=M) + Q = ITensors.qr(Q, commoninds(Q, first(AC)))[1] + any(isequal(0), dims(Q)) && return nothing, nothing, nothing, nothing + QAC = foldl(*, AC; init=dag(Q)) + @assert typeof(QAC) <: ITensor + fact = svd(QAC, commoninds(dag(Q), QAC); svd_kwargs...) + return fact, Q +end + +# ToDo : Remove this, not needed since everything passes via Vector of ITensors. +#= +function rsvd_core(AC::ITensor, M; svd_kwargs...) + Q = AC * M + #@show dims(Q) + Q = ITensors.qr(Q, commoninds(AC, Q))[1] + QAC = dag(Q) * AC + fact = svd(QAC, uniqueind(QAC, AC); svd_kwargs...) + return fact, Q +end +=# diff --git a/test/test_rsvd.jl b/test/test_rsvd.jl new file mode 100644 index 00000000..f611e385 --- /dev/null +++ b/test/test_rsvd.jl @@ -0,0 +1,100 @@ +using ITensors +using ITensorNetworks +using ITensorNetworks: rsvd, rsvd_iterative +using Test +using Random + +ITensors.enable_auto_fermion() +@testset "RSVD single shot non-fermionic no QNs" begin + N = 12 + Na = div(N, 2) - 2 + s = siteinds("S=1/2", N; conserve_qns=false) + linds = s[1:Na] + rinds = s[(Na + 1):end] + #target_flux=QN("Sz",4,1) + #T=randomITensor(target_flux,linds...,rinds...) + T = randomITensor(linds..., rinds...) + maxdim = 7 + U, S, V = svd(T, linds...; maxdim) + Tt = U * S * V + Tt /= norm(Tt) + Ur, Sr, Vr = rsvd(Tt, linds, maxdim, div(maxdim, 2)) + @test norm(Ur * Sr * Vr - Tt) ≈ 0.0 atol = 1e-5 +end + +@testset "RSVD single shot fermionic" begin + @show ITensors.using_auto_fermion() + N = 6 + Na = div(N, 2) + s = siteinds("Fermion", N; conserve_qns=true) + linds = s[1:Na] + rinds = s[(Na + 1):end] + target_flux = QN("Nf", div(N, 2), -1) + T = randomITensor(target_flux, linds..., rinds...) + maxdim = 7 + U, S, V = ITensors.svd(T, linds...; maxdim) + Tt = U * S * V + Tt /= norm(Tt) + Ur, Sr, Vr = rsvd(Tt, linds, maxdim, div(maxdim, 2);) + @test norm(Ur * Sr * Vr - Tt) ≈ 0.0 atol = 1e-5 +end + +@testset "RSVD vector single shot fermionic" begin + @show ITensors.using_auto_fermion() + maxdim = 8 + N = 15 + Na = div(N, 3) + s = siteinds("Fermion", N; conserve_qns=true) + linds = s[1:Na] + cinds = s[(Na + 1):(2 * Na)] + rinds = s[(2 * Na + 1):end] + target_flux = QN("Nf", div(N, 3) - 1, -1) + T1 = randomITensor(target_flux, linds..., cinds...) + uT1, sT1, vT1 = ITensors.svd(T1, linds...; maxdim) + target_flux = QN("Nf", div(N, 3) - 2, -1) + T2 = randomITensor(target_flux, dag.(cinds)..., rinds...) + tmap = [uT1 * sT1, vT1 * T2] + maxdim = 7 + Ur, Sr, Vr = rsvd(tmap, linds, maxdim, div(maxdim, 2)) + Ur, Sr, Vr = rsvd(tmap, linds, maxdim, div(maxdim, 2)) + @test norm(Ur * Sr * Vr - contract(tmap)) ≈ 0.0 atol = 1e-5 +end + +@testset "RSVD ITensor iterative fermionic" begin + @show ITensors.using_auto_fermion() + N = 8 + Na = div(N, 2) + s = siteinds("Fermion", N; conserve_qns=true) + linds = s[1:Na] + rinds = s[(Na + 1):end] + target_flux = QN("Nf", div(N, 2), -1) + T = randomITensor(target_flux, linds..., rinds...) + maxdim = 7 + U, S, V = ITensors.svd(T, linds...; maxdim) + Tt = U * S * V + old_norm = norm(Tt) + Tt /= old_norm + Ur, Sr, Vr = rsvd_iterative(Tt, linds; maxdim) + @test norm(Ur * Sr * Vr - Tt) ≈ 0.0 atol = 1e-5 +end + +@testset "RSVD Vector iterative fermionic" begin + @show ITensors.using_auto_fermion() + maxdim = 8 + N = 15 + Na = div(N, 3) + s = siteinds("Fermion", N; conserve_qns=true) + linds = s[1:Na] + cinds = s[(Na + 1):(2 * Na)] + rinds = s[(2 * Na + 1):end] + target_flux = QN("Nf", div(N, 3) - 1, -1) + T1 = randomITensor(target_flux, linds..., cinds...) + uT1, sT1, vT1 = ITensors.svd(T1, linds...; maxdim) + target_flux = QN("Nf", div(N, 3) - 2, -1) + T2 = randomITensor(target_flux, dag.(cinds)..., rinds...) + tmap = [uT1 * sT1, vT1 * T2] + Ur, Sr, Vr = rsvd_iterative(tmap, linds; maxdim) + @test norm(Ur * Sr * Vr - contract(tmap)) ≈ 0.0 atol = 1e-5 +end +ITensors.disable_auto_fermion() +nothing