-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathHaplotypeBuffer.cpp
225 lines (207 loc) · 8.05 KB
/
HaplotypeBuffer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#include "HaplotypeBuffer.hh"
HaplotypeBuffer::HaplotypeBuffer(size_t num_sample,sampleInfo *pedigree) :
_num_sample(num_sample),_pedigree(pedigree)
{
_num_variant=0;
_index_of_first_child.assign(_num_sample,-1);
_kid_vote.resize(_num_sample);
_dad_vote.resize(_num_sample);
_mum_vote.resize(_num_sample);
}
Genotype HaplotypeBuffer::get_genotype(size_t variant_index,size_t sample_index)
{
assert(variant_index<_num_variant);
assert(sample_index<_num_sample);
return(_kid[variant_index][sample_index]);
}
bool HaplotypeBuffer::is_mendel_consistent(size_t linenum)
{
assert(linenum>=0 && linenum<_num_variant);
return _line_is_mendel_consistent[linenum];
}
int32_t *HaplotypeBuffer::get_mendel_conflict(size_t linenum)
{
assert(linenum>=0 && linenum<_num_variant);
return _mendel_conflict[linenum].data();
}
void HaplotypeBuffer::push_back(int32_t *gt_array, int32_t *ps_array)
{
_kid.push_back(std::vector<Genotype>());
_dad.push_back(std::vector<Genotype>());
_mum.push_back(std::vector<Genotype>());
_is_aligned_with_pedigree.push_back(std::vector<bool>(_num_sample,true));
for(size_t kid_index=0;kid_index<_num_sample;kid_index++)
{
int dad_index = _pedigree->getDadIndex(kid_index);
int mum_index = _pedigree->getMumIndex(kid_index);
_kid.back().emplace_back(kid_index, gt_array, ps_array);
_dad.back().emplace_back(dad_index, gt_array, ps_array);
_mum.back().emplace_back(mum_index, gt_array, ps_array);
if(dad_index!=-1)
if(_index_of_first_child[dad_index]==-1)
_index_of_first_child[dad_index] = kid_index;
if(mum_index!=-1)
if(_index_of_first_child[mum_index]==-1)
_index_of_first_child[mum_index] = kid_index;
}
_num_variant++;
assert(_kid.size()==_num_variant);
assert(_mum.size()==_num_variant);
assert(_dad.size()==_num_variant);
}
void HaplotypeBuffer::copy_from_parents()
{
for(size_t variant_index=0;variant_index<_num_variant;variant_index++)
{
for(size_t dst_index=0;dst_index<_num_sample;dst_index++)
{
int src_index = _index_of_first_child[dst_index];
int dad_index = _pedigree->getDadIndex(dst_index);
int mum_index = _pedigree->getMumIndex(dst_index);
if(dad_index==-1&&mum_index==-1&&src_index!=-1)
{
if(dst_index== _pedigree->getMumIndex(src_index))
_kid[variant_index][dst_index]=_mum[variant_index][src_index];
else if(dst_index== _pedigree->getDadIndex(src_index))
_kid[variant_index][dst_index]=_dad[variant_index][src_index];
else
die("invalid pedigree");
_is_aligned_with_pedigree[variant_index][dst_index]=_is_aligned_with_pedigree[variant_index][src_index];
}
}
}
}
void HaplotypeBuffer::phase()
{
_mendel_conflict.assign(_num_variant,std::vector<int32_t>(_num_sample,bcf_int32_missing));
_line_is_mendel_consistent.assign(_num_variant,true);
for(size_t variant_index=0;variant_index<_num_variant;variant_index++)
{
for(size_t sample_index=0;sample_index<_num_sample;sample_index++)
{
int status = phase_by_transmission(_kid[variant_index][sample_index],_dad[variant_index][sample_index],_mum[variant_index][sample_index]);
if(status==-1)
{
_line_is_mendel_consistent[variant_index]=false;
_mendel_conflict[variant_index][sample_index] = 1;
}
if(status>=0 && !_dad[variant_index][sample_index].isMissing() && !_mum[variant_index][sample_index].isMissing() )
{
_mendel_conflict[variant_index][sample_index] = 0;
}
}
}
copy_from_parents();
}
void HaplotypeBuffer::swap(int variant,int sample) { _kid[variant][sample].swap(); }
void HaplotypeBuffer::setPhase(int variant,int sample,bool phase) { _kid[variant][sample].setPhase(phase);}
void HaplotypeBuffer::align(HaplotypeBuffer & haps_to_align)
{
assert(haps_to_align.get_num_sample() == get_num_sample());
assert(haps_to_align.get_num_variant() == get_num_variant());
align_sample(kid(),haps_to_align.kid(),_kid_vote);
align_sample(mum(),haps_to_align.mum(),_mum_vote);
align_sample(dad(),haps_to_align.dad(),_dad_vote);
check_pedigree_aligned();
copy_from_parents();
}
void HaplotypeBuffer::align_sample(std::vector< std::vector< Genotype > > & dst,
std::vector< std::vector< Genotype > > & src,
std::vector< std::unordered_map<int,pair<int,int> > > & phase_set_vote)
{
for(size_t sample_index=0;sample_index<_num_sample;sample_index++)
{
for(size_t variant_index=0;variant_index<_num_variant;variant_index++)
{
Genotype g = src[variant_index][sample_index];
if(g.ps()!=bcf_int32_missing && g.is_phased() && g.isHet() && dst[variant_index][sample_index].is_phased())
{
assert(g.ps()!=bcf_int32_missing);
if(!phase_set_vote[sample_index].count(g.ps()))
phase_set_vote[sample_index][g.ps()] = pair<int,int>(0,0);
phase_set_vote[sample_index][g.ps()].second++;
if(g.first() != dst[variant_index][sample_index].first())
phase_set_vote[sample_index][g.ps()].first++;
}
}
for(size_t variant_index=0;variant_index<_num_variant;variant_index++)
{
Genotype g = src[variant_index][sample_index];
if(g.ps()!=bcf_int32_missing)
{
bool flip=phase_set_vote[sample_index][g.ps()].first > phase_set_vote[sample_index][g.ps()].second/2;
if(phase_set_vote[sample_index][g.ps()].second>0)
{
if(flip)
{
src[variant_index][sample_index].swap();
src[variant_index][sample_index].setPhase(true);
}
}
dst[variant_index][sample_index] = src[variant_index][sample_index];
}
}
}
}
bool HaplotypeBuffer::is_sample_phased(int variant,int sample,
std::vector< std::vector< Genotype > > & genotypes,
std::vector< std::unordered_map<int,pair<int,int> > > & phase_set_vote)
{
bool phased = genotypes[variant][sample].is_phased();
int ps = genotypes[variant][sample].ps();
if(ps!=bcf_int32_missing)
{
int a=phase_set_vote[sample][ps].first;
int b=phase_set_vote[sample][ps].second;
// std::cerr<<sample<<" "<<ps<<" "<<a<<","<<b<<std::endl;
phased &= b>0;
phased &= a==0 || a==b;
}
return(phased);
}
void HaplotypeBuffer::check_pedigree_aligned()
{
for(size_t variant_index=0;variant_index<_num_variant;variant_index++)
{
for(size_t sample_index=0;sample_index<_num_sample;sample_index++)
{
bool consistent = _kid[variant_index][sample_index].first() == _mum[variant_index][sample_index].first();
bool phased = is_sample_phased(variant_index,sample_index,_kid,_kid_vote);
phased &= is_sample_phased(variant_index,sample_index,_mum,_mum_vote);
_is_aligned_with_pedigree[variant_index][sample_index]= !phased || consistent;
consistent = _kid[variant_index][sample_index].second() == _dad[variant_index][sample_index].first();
phased = is_sample_phased(variant_index,sample_index,_kid,_kid_vote);
phased &= is_sample_phased(variant_index,sample_index,_dad,_dad_vote);
_is_aligned_with_pedigree[variant_index][sample_index] = _is_aligned_with_pedigree[variant_index][sample_index] && (!phased || consistent);
}
}
}
bool HaplotypeBuffer::is_phase_set_aligned_with_pedigree(int sample,int phaseset)
{
assert(phaseset!=bcf_int32_missing);
bool ret = _kid_vote[sample][phaseset].second>0;
ret &= _kid_vote[sample][phaseset].first==0 || _kid_vote[sample][phaseset].first==_kid_vote[sample][phaseset].second;
for(size_t variant_index=0;variant_index<_num_variant;variant_index++)
if(_kid[variant_index][sample].ps()==phaseset)
ret &= _is_aligned_with_pedigree[variant_index][sample];
return(ret);
}
void HaplotypeBuffer::update_bcf1_genotypes(size_t linenum,int32_t *gt_array, int32_t *ps_array,int32_t *rps_array)
{
assert(linenum>=0 && linenum<_num_variant);
for(size_t i=0;i<_num_sample;i++)
{
ps_array[i]=rps_array[i]=bcf_int32_missing;
if(_kid[linenum][i].ps()!=bcf_int32_missing)
{
if(is_phase_set_aligned_with_pedigree(i,_kid[linenum][i].ps()))
_kid[linenum][i].update_bcf_gt_array(gt_array,i,rps_array);
else
_kid[linenum][i].update_bcf_gt_array(gt_array,i,ps_array);
}
else
{
_kid[linenum][i].update_bcf_gt_array(gt_array,i,nullptr);
}
}
}