-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathpedphase.cpp
490 lines (451 loc) · 16.6 KB
/
pedphase.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
#include "pedphase.hh"
using namespace std;
static void usage()
{
fprintf(stderr, "\n");
fprintf(stderr, "About: akt pedphase - simple Mendel inheritance phasing of duos/trios\n");
fprintf(stderr, "Usage: ./akt pedphase input.vcf.gz -p pedigree.fam\n");
fprintf(stderr, "\n");
fprintf(stderr, "Options:\n");
fprintf(stderr, " -p, --pedigree pedigree information in plink .fam format\n");
fprintf(stderr, " -o, --output-file <file> output file name [stdout]\n");
fprintf(stderr, " -O, --output-type <b|u|z|v> b: compressed BCF, u: uncompressed BCF, z: compressed VCF, v: uncompressed VCF [v]\n");
fprintf(stderr, " -@, --threads number of compression/decompression threads to use\n");
fprintf(stderr, " -x, --exclude-chromosome leave these chromosomes unphased (unphased lines will still be in in output) eg. -x chrM,chrY\n");
exit(1);
}
static int bcf_int32_count_missing(int32_t *array, int n)
{
int num_missing = 0;
for (int i = 0; i < n; i++)
{
if (array[i] == bcf_int32_missing)
{
num_missing++;
}
}
return (num_missing);
}
static void bcf_int32_set_missing(int32_t *array, int n)
{
for (int i = 0; i < n; i++)
{
array[i] = bcf_int32_missing;
}
}
PedPhaser::PedPhaser(args &a)
{
setup_io(a);
cerr << "Reading input from " << a.inputfile << endl;
_num_sample = bcf_hdr_nsamples(_out_header);
_parental_genotypes.assign(2*_num_sample,pair<int,int>(bcf_gt_missing,bcf_gt_missing));
_num_gt=_num_sample*2;
_gt_array = (int *)malloc(sizeof(int)*_num_gt);
_ps_array = (int32_t *)malloc(sizeof(int32_t)*_num_sample);
_rps_array = (int32_t *)malloc(sizeof(int32_t)*_num_sample);
_mendel_conflict = (const char **)malloc(sizeof(char *)*_num_sample);
_num_rps=_num_ps=_num_sample;
if (!a.exclude_chromosomes.empty())
{
cerr << "Will not phase chromosomes: " << a.exclude_chromosomes << " (--exclude-chromosomes)" << endl;
vector<string> chromosomes;
stringSplit(a.exclude_chromosomes, ',', chromosomes);
if (chromosomes.empty())
{
die("Problem parsing --exclude-chromosomes: " + a.exclude_chromosomes);
}
for (vector<string>::iterator chromosome = chromosomes.begin(); chromosome != chromosomes.end(); chromosome++)
{
int rid = bcf_hdr_id2int(_in_header, BCF_DT_CTG, chromosome->c_str());
if (rid == -1)
{
cerr << "WARNING: chromosome " << *chromosome << " was not in header" << endl;
}
else
{
_chromosomes_to_ignore.push_back(rid);
}
}
}
main();
}
void PedPhaser::main()
{
int min_distance_to_flush=10000;
int prev_rid = -1;
bcf1_t *line;
vector<int32_t> last_phase_set(_num_sample, bcf_int32_missing); //stores the current phase set for each sample
while (bcf_sr_next_line(_bcf_reader))
{
line = bcf_sr_get_line(_bcf_reader, 0);
if(line->rid!=prev_rid) flush_buffer();
prev_rid = line->rid;
if (chromosome_is_in_ignore_list(line))
{
flush_buffer(); //just in case something was sitting in buffer from previous chromosome
bcf_write(_out_file, _out_header, line);
}
else
{
bcf_unpack(line, BCF_UN_ALL);
int ps_status=bcf_get_format_int32(_in_header, line, "PS", &_ps_array, &_num_ps);
if(ps_status == -1)
{
bcf1_t *new_line = bcf_dup(line);
_line_buffer.push_back(new_line);
flush_buffer();
}
else if(ps_status == -2)
{
die("FORMAT/PS had incorrect type");
}
else
{
if(ps_status == -3)
{
int distance_from_last_phase_set = INT_MAX;
for(size_t i=0;i<_num_sample;i++)
{
int d = last_phase_set[i]==bcf_int32_missing ? INT_MAX : (line->pos-last_phase_set[i]);
distance_from_last_phase_set = min(d,distance_from_last_phase_set);
}
if(distance_from_last_phase_set>min_distance_to_flush)
{
flush_buffer();
std::fill(last_phase_set.begin(),last_phase_set.end(),bcf_int32_missing);
}
}
else
{
for(size_t i=0;i<_num_sample;i++)
if(_ps_array[i]!=bcf_int32_missing)
last_phase_set[i] = _ps_array[i];
}
bcf1_t *new_line = bcf_dup(line);
_line_buffer.push_back(new_line);
}
}
}
flush_buffer();
}
//performs simple duo/trio phasing using mendelian inheritance.
//returns
//-2: not a child in a duo/trio
//-1: mendelian inconsistent
//0: unphaseable
//1: phased
int phase_by_transmission(Genotype & kid_gt,Genotype & dad_gt,Genotype & mum_gt)
{
const int NUM_LEAVES= 8;//maximum number of leaves on the binary tree(we are only doing duos/trios so it never gets this big)
int pedigree_size = 3; //we might make this dynamic later
if ((dad_gt.isMissing() && mum_gt.isMissing()) || kid_gt.isMissing()) return (-2); //unphaseable due to missingness
//phasetree is perfect binary tree (stored as array) that enumerates every genotype configuration in the pedigree
//the leaf of each tree is 0 if the genotype configuration is inconsistent with inheritance and 1 otherwise.
//redundant leaves (eg. where a sample is homozygous) are also 0
vector<bool> phasetree(pow(2, pedigree_size), 0);
assert(phasetree.size() <= NUM_LEAVES);
//this loop enumerates the 2**n possible phase configurations and checks which are compatible with inheritance
for (size_t i = 0; i < phasetree.size(); i++)
{
bitset<NUM_LEAVES> leaf((int)i);
bool kid_branch = leaf[0];
bool dad_branch = leaf[1];
bool mum_branch = leaf[2];
if ((!kid_gt.is_phased() || !kid_branch) && (!dad_gt.is_phased() || !dad_branch) && (!mum_gt.is_phased() || !mum_branch))
{
bool is_inheritance_consistent = dad_gt.isMissing() || dad_gt.getGenotype(dad_branch) == kid_gt.getGenotype((kid_branch + 1) % 2);
is_inheritance_consistent &= mum_gt.isMissing() || mum_gt.getGenotype(mum_branch) == kid_gt.getGenotype(kid_branch);
if (is_inheritance_consistent)
{
phasetree[i] = 1;
}
}
}
int sum = accumulate(phasetree.begin(), phasetree.end(), 0);
if (sum > 1)
{
return (0); //multiple solutions - cannot phase
}
else if (sum == 1) //found a unique solution for phasing. update the genotype array.
{
int leaf = find(phasetree.begin(), phasetree.end(), 1) - phasetree.begin();
if ((leaf >> 0) % 2) kid_gt.swap();
if ((leaf >> 1) % 2) dad_gt.swap();
if (leaf >> 2) mum_gt.swap();
kid_gt.setPhase(true);
dad_gt.setPhase(true);
mum_gt.setPhase(true);
return (1);
}
else //inconsistent with mendelian inheritance.
{
return (-1);
}
}
bool is_mendel_inconsistent(Genotype kid,Genotype dad,Genotype mum)
{
if(kid.isMissing() || !kid.is_phased()) return false;
int k0=kid.first();
int k1=kid.second();
int m_transmitted = k0;
int d_transmitted = k1;
if(!dad.isMissing())
d_transmitted=dad.first();
if(!mum.isMissing())
m_transmitted=mum.first();
return(k0!=m_transmitted || k1!=d_transmitted);
}
bool is_mendel_inconsistent(pair<int,int> kid,pair<int,int> dad,pair<int,int> mum)
{
if(bcf_gt_is_missing(kid.first) || bcf_gt_is_missing(kid.second))
return false;
int k0=kid.first;
int k1=kid.second;
int m_transmitted = k0;
int d_transmitted = k1;
if(!bcf_gt_is_missing(dad.first)&&!bcf_gt_is_missing(dad.second))
d_transmitted=dad.first;
if(!bcf_gt_is_missing(mum.first)&&!bcf_gt_is_missing(mum.second))
m_transmitted=mum.first;
return(k0!=m_transmitted || k1!=d_transmitted);
}
int PedPhaser::mendel_phase(int kid_index, int *gt_array, int *ps_array)
{
int dad_index = _pedigree->getDadIndex(kid_index);
int mum_index = _pedigree->getMumIndex(kid_index);
Genotype kid_gt(kid_index, gt_array, ps_array);
Genotype dad_gt(dad_index, gt_array, ps_array);
Genotype mum_gt(mum_index, gt_array, ps_array);
if(mum_index>=0 || dad_index>=0) _sample_has_been_phased[kid_index]=true;
bool update_dad=false,update_mum=false;
if(mum_index>=0)
{
update_mum = !_sample_has_been_phased[mum_index];
_sample_has_been_phased[mum_index]=true;
}
if(dad_index>=0)
{
update_dad = !_sample_has_been_phased[dad_index];
_sample_has_been_phased[dad_index]=true;
}
int ret = phase_by_transmission(kid_gt,dad_gt,mum_gt);
if(ret)
{
if(dad_index>=0) _parental_genotypes[kid_index*2] = pair<int,int>(dad_gt.first(),dad_gt.second());
if(mum_index>=0) _parental_genotypes[kid_index*2+1] = pair<int,int>(mum_gt.first(),mum_gt.second());
if(update_dad) dad_gt.update_bcf_gt_array(gt_array, dad_index);
if(update_mum) mum_gt.update_bcf_gt_array(gt_array, mum_index);
kid_gt.update_bcf_gt_array(gt_array, kid_index);
}
return(ret);
}
bool PedPhaser::chromosome_is_in_ignore_list(bcf1_t *record)
{
for (vector<int>::iterator rid = _chromosomes_to_ignore.begin(); rid != _chromosomes_to_ignore.end(); rid++)
if (*rid == record->rid)
return true;
return false;
}
//Turns haploid GTs (1) into padded "diploid" ones like (1,bcf_vector32_end).
int *diplofy(int *gt,int num_sample)
{
std::vector<int> src(gt,gt+num_sample);
gt=(int *)realloc(gt,2*num_sample*sizeof(int));//this should be redundant
for(int i=0;i<num_sample;i++)
{
gt[i*2] = src[i];
gt[i*2+1] = bcf_int32_vector_end;
}
return(gt);
}
int PedPhaser::flush_buffer()
{
// std::cerr<<"flushing buffer "<<_line_buffer.size()<<std::endl;//debug
if (_line_buffer.empty()) return(0);
int _num_gt=0,_num_ps=0;
HaplotypeBuffer hap_transmission(_num_sample,_pedigree);//stores the transmission phased haplotypes
HaplotypeBuffer hap_phaseset(_num_sample,_pedigree);//stores the phase-set phased haplotypes
for (deque<bcf1_t *>::iterator it1 = _line_buffer.begin(); it1 != _line_buffer.end(); it1++)
{
bcf1_t *line = *it1;
int status = bcf_get_genotypes(_out_header, line, &_gt_array, &_num_gt);
assert(status== 2 * _num_sample || status==_num_sample);
if(status==_num_sample)//This is a hack to handle all-haploid VCF rows.
_gt_array=diplofy(_gt_array,_num_sample);
hap_transmission.push_back(_gt_array);
status = bcf_get_format_int32(_in_header, line,"PS", &_ps_array, &_num_ps);
if(status==_num_sample)
hap_phaseset.push_back(_gt_array,_ps_array);
else if(status<0)
hap_phaseset.push_back(_gt_array,nullptr);
else
die(("Invalid PS length: "+std::to_string(status)).c_str());
}
hap_transmission.phase();
hap_transmission.align(hap_phaseset);
int count=0;
//Finally, flush the buffer to the output file.
while (!_line_buffer.empty())
{
bcf1_t *line = _line_buffer.front();
_line_buffer.pop_front();
hap_transmission.update_bcf1_genotypes(count,_gt_array,_ps_array,_rps_array);
bcf_update_genotypes(_out_header, line, _gt_array, 2*_num_sample);
if(bcf_int32_count_missing(_ps_array,_num_sample)==_num_sample)
bcf_update_format_int32(_out_header, line, "PS", nullptr,0);
else
bcf_update_format_int32(_out_header, line, "PS", _ps_array, _num_sample);
if(bcf_int32_count_missing(_rps_array,_num_sample)==_num_sample)
bcf_update_format_int32(_out_header, line, "RPS", nullptr,0);
else
bcf_update_format_int32(_out_header, line, "RPS", _rps_array, _num_sample);
if(bcf_update_format_int32(_out_header, line, "ME", hap_transmission.get_mendel_conflict(count), _num_sample)!=0)
die("problem writing FORMAT/ME");
bcf_write(_out_file, _out_header, line);
bcf_destroy(line);
count++;
}
return (0);
}
void PedPhaser::setup_io(args &a)
{
//open a file.
_bcf_reader = bcf_sr_init();
if (a.targets != nullptr)
{
if (bcf_sr_set_targets(_bcf_reader, a.targets, a.targets_is_file, 0) < 0)
{
cerr << "ERROR: Failed to set targets " << a.targets << endl;
exit(1);
}
}
if (a.regions != nullptr)
{
if (bcf_sr_set_regions(_bcf_reader, a.regions, a.regions_is_file) < 0)
{
cerr << "ERROR: Failed to read the regions: " << a.regions << endl;
exit(1);
}
}
if (bcf_sr_add_reader(_bcf_reader, a.inputfile) != 1)
{
cerr << "ERROR: problem opening " << a.inputfile << endl;
exit(1);
}
_in_header = _bcf_reader->readers[0].header;
if (a.pedigree == nullptr)
{
_pedigree = new sampleInfo(_in_header);
}
else
{
_pedigree = new sampleInfo(a.pedigree, _in_header);
}
if (_pedigree->N <= 0)
{
die("no pedigree detected");
}
setup_output(a);
}
void PedPhaser::setup_output(args &a)
{
_out_header = bcf_hdr_dup(_in_header);
char output_type[] = "wv";
output_type[1] = a.output_type;
_out_file = hts_open(a.outfile, output_type);
if (a.nthreads > 0)
{
bcf_sr_set_threads(_bcf_reader, a.nthreads);
hts_set_threads(_out_file, a.nthreads);
}
bcf_hdr_remove(_out_header, BCF_HL_FMT, "PS"); //remove the old PS descripion
bcf_hdr_append(_out_header, "##FORMAT=<ID=PS,Number=1,Type=Integer,Description=\"Read-backed phase set. If missing from a phased genotype then it indicates the genotype was pedigree-phased such that children are phased as 'maternal allele | paternal allele' and parents are phased as 'allele transmitted to first child | untransmitted allele'\">");
bcf_hdr_append(_out_header, "##FORMAT=<ID=RPS,Number=1,Type=Integer,Description=\"Read-backed phase set. The phase set (PS) value before this phased genotype was incorporated into the pedigree phase set\">");
bcf_hdr_append(_out_header, "##FORMAT=<ID=ME,Number=1,Type=Integer,Description=\"Mendel error. A value of ME=1 indicates that this sample is a child in a duo/trio with genotypes that are inconsistent with Mendelian inheritance. The value is 0 if the child is in a trio that is Mendel consistent and has no missing genotypes. The value is missing otherwise.\">");
bcf_hdr_append(_out_header, ("##akt_pedphase_version=" + (string)AKT_VERSION).c_str());
bcf_hdr_write(_out_file, _out_header);
}
PedPhaser::~PedPhaser()
{
delete _pedigree;
hts_close(_out_file);
free(_ps_array);
free(_gt_array);
bcf_sr_destroy(_bcf_reader);
bcf_hdr_destroy(_out_header);
if(_rps_array) free(_rps_array);
free(_mendel_conflict);
}
int pedphase_main(int argc, char **argv)
{
int c;
args arguments;
arguments.output_type = 'v';
if (argc < 3)
usage();
static struct option loptions[] = {
{"out", 1, 0, 'o'},
{"output-type", 1, 0, 'O'},
{"pedigree", 1, 0, 'p'},
{"threads", required_argument, nullptr, '@'},
{"targets", required_argument, nullptr, 't'},
{"targets-file", required_argument, nullptr, 'T'},
{"regions-file", required_argument, nullptr, 'R'},
{"regions", required_argument, nullptr, 'r'},
{"exclude-chromosome", required_argument, nullptr, 'x'},
{0, 0, 0, 0}};
arguments.regions_is_file = false;
arguments.targets_is_file = false;
arguments.targets = arguments.pedigree = arguments.inputfile = arguments.include = arguments.regions = nullptr;
arguments.outfile = "-";
arguments.nthreads = 0;
arguments.exclude_chromosomes = "";
while ((c = getopt_long(argc, argv, "o:p:t:T:r:R:O:@:x:", loptions, nullptr)) >= 0)
{
switch (c)
{
case 'o':
arguments.outfile = optarg;
break;
case 'O':
arguments.output_type = optarg[0];
break;
case 'p':
arguments.pedigree = optarg;
break;
case 'i':
arguments.include = optarg;
break;
case 't':
arguments.targets = optarg;
break;
case 'T':
arguments.targets = optarg;
break;
case 'r':
arguments.regions = optarg;
break;
case 'x':
arguments.exclude_chromosomes = optarg;
break;
case '@':
arguments.nthreads = atoi(optarg);
break;
case 'R':
arguments.regions = optarg;
arguments.regions_is_file = true;
break;
default:
die("unknown argument");
}
}
optind++;
arguments.inputfile = argv[optind];
if (arguments.inputfile == nullptr)
{
die("no input provided");
}
cerr << "Output file: " << arguments.outfile << endl;
PedPhaser p(arguments);
return (0);
}