forked from sczhou/CodeFormer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_codeformer.py
266 lines (238 loc) · 12 KB
/
inference_codeformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import os
import cv2
import argparse
import glob
import torch
from torchvision.transforms.functional import normalize
from basicsr.utils import imwrite, img2tensor, tensor2img
from basicsr.utils.download_util import load_file_from_url
from facelib.utils.face_restoration_helper import FaceRestoreHelper
from facelib.utils.misc import is_gray
import torch.nn.functional as F
from basicsr.utils.registry import ARCH_REGISTRY
pretrain_model_url = {
'restoration': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth',
}
def set_realesrgan():
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils.realesrgan_utils import RealESRGANer
cuda_is_available = torch.cuda.is_available()
half = True if cuda_is_available else False
model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=2,
)
upsampler = RealESRGANer(
scale=2,
model_path="https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth",
model=model,
tile=args.bg_tile,
tile_pad=40,
pre_pad=0,
half=half, # need to set False in CPU mode
)
if not cuda_is_available: # CPU
import warnings
warnings.warn('Running on CPU now! Make sure your PyTorch version matches your CUDA.'
'The unoptimized RealESRGAN is slow on CPU. '
'If you want to disable it, please remove `--bg_upsampler` and `--face_upsample` in command.',
category=RuntimeWarning)
return upsampler
if __name__ == '__main__':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input_path', type=str, default='./inputs/whole_imgs',
help='Input image, video or folder. Default: inputs/whole_imgs')
parser.add_argument('-o', '--output_path', type=str, default=None,
help='Output folder. Default: results/<input_name>_<w>')
parser.add_argument('-w', '--fidelity_weight', type=float, default=0.5,
help='Balance the quality and fidelity. Default: 0.5')
parser.add_argument('-s', '--upscale', type=int, default=2,
help='The final upsampling scale of the image. Default: 2')
parser.add_argument('--has_aligned', action='store_true', help='Input are cropped and aligned faces. Default: False')
parser.add_argument('--only_center_face', action='store_true', help='Only restore the center face. Default: False')
parser.add_argument('--draw_box', action='store_true', help='Draw the bounding box for the detected faces. Default: False')
# large det_model: 'YOLOv5l', 'retinaface_resnet50'
# small det_model: 'YOLOv5n', 'retinaface_mobile0.25'
parser.add_argument('--detection_model', type=str, default='retinaface_resnet50',
help='Face detector. Optional: retinaface_resnet50, retinaface_mobile0.25, YOLOv5l, YOLOv5n. \
Default: retinaface_resnet50')
parser.add_argument('--bg_upsampler', type=str, default='None', help='Background upsampler. Optional: realesrgan')
parser.add_argument('--face_upsample', action='store_true', help='Face upsampler after enhancement. Default: False')
parser.add_argument('--bg_tile', type=int, default=400, help='Tile size for background sampler. Default: 400')
parser.add_argument('--suffix', type=str, default=None, help='Suffix of the restored faces. Default: None')
parser.add_argument('--save_video_fps', type=float, default=None, help='Frame rate for saving video. Default: None')
args = parser.parse_args()
# ------------------------ input & output ------------------------
w = args.fidelity_weight
input_video = False
if args.input_path.endswith(('jpg', 'png')): # input single img path
input_img_list = [args.input_path]
result_root = f'results/test_img_{w}'
elif args.input_path.endswith(('mp4', 'mov', 'avi')): # input video path
from basicsr.utils.video_util import VideoReader, VideoWriter
input_img_list = []
vidreader = VideoReader(args.input_path)
image = vidreader.get_frame()
while image is not None:
input_img_list.append(image)
image = vidreader.get_frame()
audio = vidreader.get_audio()
fps = vidreader.get_fps() if args.save_video_fps is None else args.save_video_fps
video_name = os.path.basename(args.input_path)[:-4]
result_root = f'results/{video_name}_{w}'
input_video = True
vidreader.close()
else: # input img folder
if args.input_path.endswith('/'): # solve when path ends with /
args.input_path = args.input_path[:-1]
# scan all the jpg and png images
input_img_list = sorted(glob.glob(os.path.join(args.input_path, '*.[jp][pn]g')))
result_root = f'results/{os.path.basename(args.input_path)}_{w}'
if not args.output_path is None: # set output path
result_root = args.output_path
test_img_num = len(input_img_list)
# ------------------ set up background upsampler ------------------
if args.bg_upsampler == 'realesrgan':
bg_upsampler = set_realesrgan()
else:
bg_upsampler = None
# ------------------ set up face upsampler ------------------
if args.face_upsample:
face_upsampler = None
# if bg_upsampler is not None:
# face_upsampler = bg_upsampler
# else:
# face_upsampler = set_realesrgan()
else:
face_upsampler = None
# ------------------ set up CodeFormer restorer -------------------
net = ARCH_REGISTRY.get('CodeFormer')(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9,
connect_list=['32', '64', '128', '256']).to(device)
# ckpt_path = 'weights/CodeFormer/codeformer.pth'
ckpt_path = load_file_from_url(url=pretrain_model_url['restoration'],
model_dir='weights/CodeFormer', progress=True, file_name=None)
checkpoint = torch.load(ckpt_path)['params_ema']
net.load_state_dict(checkpoint)
net.eval()
# ------------------ set up FaceRestoreHelper -------------------
# large det_model: 'YOLOv5l', 'retinaface_resnet50'
# small det_model: 'YOLOv5n', 'retinaface_mobile0.25'
if not args.has_aligned:
print(f'Face detection model: {args.detection_model}')
if bg_upsampler is not None:
print(f'Background upsampling: True, Face upsampling: {args.face_upsample}')
else:
print(f'Background upsampling: False, Face upsampling: {args.face_upsample}')
face_helper = FaceRestoreHelper(
args.upscale,
face_size=512,
crop_ratio=(1, 1),
det_model = args.detection_model,
save_ext='png',
use_parse=True,
device=device)
# -------------------- start to processing ---------------------
for i, img_path in enumerate(input_img_list):
# clean all the intermediate results to process the next image
face_helper.clean_all()
if isinstance(img_path, str):
img_name = os.path.basename(img_path)
basename, ext = os.path.splitext(img_name)
print(f'[{i+1}/{test_img_num}] Processing: {img_name}')
img = cv2.imread(img_path, cv2.IMREAD_COLOR)
else: # for video processing
basename = str(i).zfill(6)
img_name = f'{video_name}_{basename}' if input_video else basename
print(f'[{i+1}/{test_img_num}] Processing: {img_name}')
img = img_path
if args.has_aligned:
# the input faces are already cropped and aligned
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
face_helper.is_gray = is_gray(img, threshold=5)
if face_helper.is_gray:
print('Grayscale input: True')
face_helper.cropped_faces = [img]
else:
face_helper.read_image(img)
# get face landmarks for each face
num_det_faces = face_helper.get_face_landmarks_5(
only_center_face=args.only_center_face, resize=640, eye_dist_threshold=5)
print(f'\tdetect {num_det_faces} faces')
# align and warp each face
face_helper.align_warp_face()
# face restoration for each cropped face
for idx, cropped_face in enumerate(face_helper.cropped_faces):
# prepare data
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
try:
with torch.no_grad():
output = net(cropped_face_t, w=w, adain=True)[0]
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
del output
torch.cuda.empty_cache()
except Exception as error:
print(f'\tFailed inference for CodeFormer: {error}')
restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
restored_face = restored_face.astype('uint8')
face_helper.add_restored_face(restored_face)
# paste_back
if not args.has_aligned:
# upsample the background
if bg_upsampler is not None:
# Now only support RealESRGAN for upsampling background
bg_img = bg_upsampler.enhance(img, outscale=args.upscale)[0]
else:
bg_img = None
face_helper.get_inverse_affine(None)
# paste each restored face to the input image
if args.face_upsample and face_upsampler is not None:
restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=args.draw_box, face_upsampler=face_upsampler)
else:
restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=args.draw_box)
# save faces
for idx, (cropped_face, restored_face) in enumerate(zip(face_helper.cropped_faces, face_helper.restored_faces)):
# save cropped face
if not args.has_aligned:
save_crop_path = os.path.join(result_root, 'cropped_faces', f'{basename}_{idx:02d}.png')
imwrite(cropped_face, save_crop_path)
# save restored face
if args.has_aligned:
save_face_name = f'{basename}.png'
else:
save_face_name = f'{basename}_{idx:02d}.png'
if args.suffix is not None:
save_face_name = f'{save_face_name[:-4]}_{args.suffix}.png'
save_restore_path = os.path.join(result_root, 'restored_faces', save_face_name)
imwrite(restored_face, save_restore_path)
# save restored img
if not args.has_aligned and restored_img is not None:
if args.suffix is not None:
basename = f'{basename}_{args.suffix}'
save_restore_path = os.path.join(result_root, 'final_results', f'{basename}.png')
imwrite(restored_img, save_restore_path)
# save enhanced video
if input_video:
print('Video Saving...')
# load images
video_frames = []
img_list = sorted(glob.glob(os.path.join(result_root, 'final_results', '*.[jp][pn]g')))
for img_path in img_list:
img = cv2.imread(img_path)
video_frames.append(img)
# write images to video
height, width = video_frames[0].shape[:2]
if args.suffix is not None:
video_name = f'{video_name}_{args.suffix}.png'
save_restore_path = os.path.join(result_root, f'{video_name}.mp4')
vidwriter = VideoWriter(save_restore_path, height, width, fps, audio)
for f in video_frames:
vidwriter.write_frame(f)
vidwriter.close()
print(f'\nAll results are saved in {result_root}')