forked from felixkreuk/HideAndSpeak
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolver_n_msg_deepsteg.py
154 lines (128 loc) · 6.27 KB
/
solver_n_msg_deepsteg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from torch.optim.lr_scheduler import StepLR
from loguru import logger
import torch
import torch.nn as nn
import torch.nn.functional as F
from os.path import join
from os import makedirs
from model import Encoder, CarrierDecoder, MsgDecoder
from solver import Solver
from collections import defaultdict
from hparams import *
from add_noise import add_noise
import os
class SolverNMsgMultipleDecodersDeepSteg(Solver):
def __init__(self, config):
super(SolverNMsgMultipleDecodersDeepSteg, self).__init__(config)
logger.info("running multiple decoders solver!")
# ------ create models ------
self.dec_c_conv_dim = self.n_messages + 1 + 64
self.build_models()
# ------ make parallel ------
self.enc_c = nn.DataParallel(self.enc_c)
self.dec_c = nn.DataParallel(self.dec_c)
self.dec_m = [nn.DataParallel(m) for m in self.dec_m]
# ------ create optimizer ------
dec_m_params = []
for i in range(len(self.dec_m)):
dec_m_params += list(self.dec_m[i].parameters())
params = list(self.enc_c.parameters()) \
+ list(self.dec_c.parameters()) \
+ list(dec_m_params)
self.opt = self.opt_type(params, lr=self.lr)
self.lr_sched = StepLR(self.opt, step_size=20, gamma=0.5)
# ------ send to cuda ------
self.enc_c.to(self.device)
self.dec_c.to(self.device)
self.dec_m = [m.to(self.device) for m in self.dec_m]
if self.load_ckpt_dir:
self.load_models(self.load_ckpt_dir)
logger.debug(self.enc_c)
logger.debug(self.dec_c)
logger.debug(self.dec_m)
def build_models(self):
super(SolverNMsgMultipleDecodersDeepSteg, self).build_models()
self.enc_c = Encoder(block_type=self.block_type,
n_layers=self.config.enc_n_layers)
self.dec_c = CarrierDecoder(conv_dim=self.dec_c_conv_dim,
block_type=self.block_type,
n_layers=self.config.dec_c_n_layers)
self.dec_m = [MsgDecoder(conv_dim=self.dec_m_conv_dim,
block_type=self.block_type) for _ in range(self.n_messages)]
def save_models(self, suffix=''):
logger.info(f"saving model to: {self.ckpt_dir}\n==> suffix: {suffix}")
makedirs(join(self.ckpt_dir, suffix), exist_ok=True)
torch.save(self.enc_c.state_dict(), join(self.ckpt_dir, suffix, "enc_c.ckpt"))
torch.save(self.dec_c.state_dict(), join(self.ckpt_dir, suffix, "dec_c.ckpt"))
for i,m in enumerate(self.dec_m):
torch.save(m.state_dict(), join(self.ckpt_dir, suffix, f"dec_m_{i}.ckpt"))
def load_models(self, ckpt_dir):
self.enc_c.load_state_dict(torch.load(join(ckpt_dir, "enc_c.ckpt")))
self.dec_c.load_state_dict(torch.load(join(ckpt_dir, "dec_c.ckpt")))
for i,m in enumerate(self.dec_m):
m.load_state_dict(torch.load(join(ckpt_dir, f"dec_m_{i}.ckpt")))
logger.info("loaded models")
def reset_grad(self):
self.opt.zero_grad()
def train_mode(self):
super(SolverNMsgMultipleDecodersDeepSteg, self).train_mode()
self.enc_c.train()
self.dec_c.train()
for model in self.dec_m:
model.train()
def eval_mode(self):
super(SolverNMsgMultipleDecodersDeepSteg, self).eval_mode()
self.enc_c.eval()
self.dec_c.eval()
for model in self.dec_m:
model.eval()
def step(self):
self.opt.step()
if self.cur_iter % len(self.train_loader) == 0:
self.lr_sched.step()
def incur_loss(self, carrier, carrier_reconst, msg, msg_reconst):
n_messages = len(msg)
losses_log = defaultdict(int)
carrier, msg = carrier.to(self.device), [msg_i.to(self.device) for msg_i in msg]
all_msg_loss = 0
carrier_loss = self.reconstruction_loss(carrier_reconst, carrier, type=self.loss_type)
for i in range(n_messages):
msg_loss = self.reconstruction_loss(msg_reconst[i], msg[i], type=self.loss_type)
all_msg_loss += msg_loss
losses_log['carrier_loss'] = carrier_loss.item()
losses_log['avg_msg_loss'] = all_msg_loss.item() / self.n_messages
loss = self.lambda_carrier_loss * carrier_loss + self.lambda_msg_loss * all_msg_loss
return loss, losses_log
def forward(self, carrier, carrier_phase, msg):
assert type(carrier) == torch.Tensor and type(msg) == list
carrier, carrier_phase, msg = carrier.to(self.device), \
carrier_phase.to(self.device), \
[msg_i.to(self.device) for msg_i in msg]
msg_reconst_list = []
# create embedded carrier
carrier_enc = self.enc_c(carrier) # encode the carrier
msg_enc = torch.cat(msg, dim=1) # concat all msg_i into single tensor
merged_enc = torch.cat((carrier_enc, carrier, msg_enc), dim=1) # concat encodings on features axis
carrier_reconst = self.dec_c(merged_enc) # decode carrier
if self.carrier_detach != -1 and self.cur_iter > self.carrier_detach:
carrier_reconst = carrier_reconst.detach()
# add stft noise to carrier
if (self.add_stft_noise != -1 and self.cur_iter > self.add_stft_noise) or self.mode == 'test':
self.stft.to(self.device)
y = self.stft.inverse(carrier_reconst.squeeze(1), carrier_phase.squeeze(1))
carrier_reconst_tag, _ = self.stft.transform(y.squeeze(1))
carrier_reconst_tag = carrier_reconst_tag.unsqueeze(1)
self.stft.to('cpu')
else:
carrier_reconst_tag = carrier_reconst
# add different types of noise to carrier
# (gaussian, speckle, salt and pepper)
if self.add_carrier_noise:
carrier_reconst_tag = add_noise(carrier_reconst_tag,
self.add_carrier_noise,
self.carrier_noise_norm)
# decode messages from carrier
for i in range(len(msg)): # decode each msg_i using decoder_m_i
msg_reconst = self.dec_m[i](carrier_reconst_tag)
msg_reconst_list.append(msg_reconst)
return carrier_reconst, msg_reconst_list