diff --git a/docs/articles/HELPS-vignette.html b/docs/articles/HELPS-vignette.html index e48c3a6..b6c809e 100644 --- a/docs/articles/HELPS-vignette.html +++ b/docs/articles/HELPS-vignette.html @@ -79,7 +79,6 @@

HELPS-vignette

 library(HELPS)
-library(ncdf4)
 library(raster)
 #> Loading required package: sp
 library(dplyr)
@@ -97,8 +96,6 @@ 

HELPS-vignette

#> intersect, setdiff, setequal, union library(ggplot2) library(knitr) -library(sf) -#> Linking to GEOS 3.12.1, GDAL 3.8.4, PROJ 9.3.1; sf_use_s2() is TRUE library(ggpattern)

Gather input data: @@ -123,34 +120,34 @@

Prepare your own input datahttps://data.isimip.org/search/tree/ISIMIP2b/InputData/climate/atmosphere/) -contains outputs from CMIP5-era models (GFDL-ESM2M, HadGEM2-ES, -IPSL-CM5A-LR, and MIROC5) for specific scenarios - The ISIMIP3b -repository (https://data.isimip.org/search/tree/ISIMIP3b/InputData/climate/atmosphere/) -contains outputs from CMIP6-era models (GFDL-ESM4, IPSL-CM6A-LR, -MPI-ESM1-2-HR, MRI-ESM2-0, and UKSEM1-0-LL) for specific scenarios - If -a user wishes to explore other CMIP models or bias-correct model data -against different observational data than that used by ISIMIP, the BASD -python package (https://github.com/JGCRI/basd) is available for ease of -use. BASD implements an extension of the bias adjustment and statistical -downscaling method used in ISIMIP3b (ISIMIP3BASD, Lange 2021 https://zenodo.org/records/4686991 and https://gmd.copernicus.org/articles/12/3055/2019/). The -ISIMIP3BASD code base can also be used directly. For additional -information, please see https://www.isimip.org/documents/413/ISIMIP3b_bias_adjustment_fact_sheet_Gnsz7CO.pdf +data exist: - The ISIMIP2b +repository contains outputs from CMIP5-era models (GFDL-ESM2M, +HadGEM2-ES, IPSL-CM5A-LR, and MIROC5) for specific scenarios - The ISIMIP3b +repository contains outputs from CMIP6-era models (GFDL-ESM4, +IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, and UKSEM1-0-LL) for specific +scenarios - If a user wishes to explore other CMIP models or +bias-correct model data against different observational data than that +used by ISIMIP, the BASD +python package is available for ease of use. BASD implements an +extension of the bias adjustment and statistical downscaling method used +in ISIMIP3b (ISIMIP3BASD, +Lange 2021). The ISIMIP3BASD code base can also be used directly. For +additional information, please see here. - If a user wishes to explore novel scenarios not covered by CMIP models -or the ISIMIP collection, we suggest a combination of STITCHES emulation -(https://github.com/JGCRI/stitches) and BASD bias -correction and downscaling.

+or the ISIMIP collection, we suggest a combination of STITCHES emulation and BASD +bias correction and downscaling.

HELPS has been tested with both ISIMIP data and outputs from BASD.

-

Besides the climate projections, HELPS also takes crop -calendar (https://zenodo.org/records/5062513) and harvested area -(https://doi.org/10.7910/DVN/SWPENT) data as input for +

Besides the climate projections, HELPS also takes GGCMI +Phase 3 crop calendar (Jägermeyr et al. 2021) (https://zenodo.org/records/5062513) and SPAM harvested +area (IFPRI, 2024) (https://doi.org/10.7910/DVN/SWPENT) data as input for temporal and spatial aggregation in the package.

HELPS provides measurement of crop specific labor heat stress exposure and heat-induced physical work capacity loss for 93 sectors, consisting of 46 SPAM crops by 2 irrigation practices (rain-fed and irrigated) and 1 noncrop sector. Below is the fUll list of sectors -supported in HELPS:

+supported in HELPS, and refer to Table 1 for crop +mapping:

SECTOR_ALL <- c("WHEA_I", "RICE_I", "MAIZ_I", "SOYB_I", "BARL_I", "MILL_I", "PMIL_I", "SORG_I", "OCER_I",
                 "POTA_I", "SWPO_I", "YAMS_I", "CASS_I", "BEAN_I", "CHIC_I", "COWP_I", "PIGE_I", "LENT_I",
                 "GROU_I", "SUNF_I", "RAPE_I", "SESA_I", "SUGC_I", "SUGB_I", "COTT_I", "OFIB_I", "BANA_I",
@@ -165,6 +162,296 @@ 

Prepare your own input data"REST_R", "NONCROP")

+
+

Table 1. Crop mapping between data sources. +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
SPAMSPAM Crop Nameggcmiggcmi Crop Name
WHEAWheatwhwheat
RICERiceririce
MAIZMaizemaimaize
SOYBSoybeansoysoybean
BARLBarleybarbarley
MILLSmall Milletmilmillet
PMILPearl Milletmilmillet
SORGSorghumsorsorghum
OCEROther Cerealsryerye
POTAPotatopotpotato
SWPOSweet Potatocascassava
YAMSYamscascassava
CASSCassavacascassava
BEANBeanbeabeans
CHICChickpeapeafield peas
COWPCowpeapeabeans
PIGEPigeon Peapeabeans
LENTLentilpeafield peas
GROUGroundnutnutgroundnut
SUNFSunflowersunsunflower
RAPERapeseedraprapeseed
SESASesame Seedsunsunflower
SUGCSugarcanesgcsugar cane
SUGBSugarbeetsgbsugar beet
COTTCottoncotcotton
OFIBOther Fiber Crops
BANABanana
PLNTPlantain
CITRCitrus
TROFOther Tropical Fruit
TEMFTemperate Fruit
TOMATomato
ONIOOnion
VEGEOther Vegetables
ORTSOther Roots
OPULOther Pulses
CNUTCoconut
OILPOilpalm
OOILOther Oil Crops
COFFArabic Coffee
RCOFRobust Coffee
COCOCocoa
RUBBRubber
TEASTea
TOBATobacco
RESTRest Of Crops
+

1. Daily gridded inputs: @@ -199,7 +486,6 @@

Step1.1: calculate daily gr "../HELPS_Example_Data/hurs_example_day.nc", "../HELPS_Example_Data/tas_example_day.nc", "../HELPS_Example_Data/ps_example_day.nc") -#> |---------|---------|---------|---------|========================================= wbgt.sun.day #> class : RasterStack #> dimensions : 360, 720, 259200, 366 (nrow, ncol, ncell, nlayers) @@ -489,7 +775,7 @@

Step2.2: calcula pwc.mon.foster <- PWC(WBGT = esi.mon, LHR = LHR_Foster, workload = "high") end_t = Sys.time() end_t - start_t -#> Time difference of 13.81614 secs +#> Time difference of 12.05804 secs pwc.mon.foster #> class : RasterStack #> dimensions : 360, 720, 259200, 12 (nrow, ncol, ncell, nlayers) @@ -504,7 +790,7 @@

Step2.2: calcula pwc.mon.hothaps <- PWC(WBGT = esi.mon, LHR = LHR_Hothaps, workload = "high") end_t = Sys.time() end_t - start_t -#> Time difference of 0.763947 secs +#> Time difference of 0.7341189 secs pwc.mon.hothaps #> class : RasterStack #> dimensions : 360, 720, 259200, 12 (nrow, ncol, ncell, nlayers) @@ -519,7 +805,7 @@

Step2.2: calcula pwc.mon.niosh <- PWC(WBGT = esi.mon, LHR = LHR_NIOSH, workload = "high") end_t = Sys.time() end_t - start_t -#> Time difference of 15.95208 secs +#> Time difference of 18.30968 secs pwc.mon.niosh #> class : RasterStack #> dimensions : 360, 720, 259200, 12 (nrow, ncol, ncell, nlayers) @@ -534,7 +820,7 @@

Step2.2: calcula pwc.mon.iso <- PWC(WBGT = esi.mon, LHR = LHR_ISO, workload = "high") end_t = Sys.time() end_t - start_t -#> Time difference of 27.06221 secs +#> Time difference of 18.64814 secs pwc.mon.iso #> class : RasterStack #> dimensions : 360, 720, 259200, 12 (nrow, ncol, ncell, nlayers) diff --git a/docs/index.html b/docs/index.html index 6f50e55..266c4d4 100644 --- a/docs/index.html +++ b/docs/index.html @@ -131,7 +131,7 @@

-

Sheng, D. et al. Omitting labor responses to heat stress underestimates future climate impact on agriculture. (Under review) doi:https://doi.org/10.21203/rs.3.rs-5000229/v1.

+

Sheng, D. et al. Omitting labor responses to heat stress underestimates future climate impact on agriculture. (Under review). doi: https://doi.org/10.21203/rs.3.rs-5000229/v1.

Back to Contents


@@ -154,7 +154,7 @@

  • Open R studio:

  • install.packages('devtools')
    -devtools::install_github('dsheng1026/HELPS')
    +devtools::install_github('JGCRI/HELPS')
     renv::restore()
     devtools::load_all()

    renv::restore() helps to install package dependencies for HELPS, but users might need to download a few R packages individually through RStudio’s guidance. You should now be set to run the driver without running into any package version issues. Note that if you have completed steps related to renv once, your R session should automatically connect to a private library when you open HELPS.Rproj, and you can run the code below to use the package.

    @@ -171,9 +171,9 @@

    -

    To run the vignette, users need first download a set of example data into folder HELPS_Example_Data by running

    +

    To run vignette/HELPS-vignette.Rmd, users need first download a set of example data into folder HELPS_Example_Data by running

    devtools::load_all()
     get_example_data()

    Back to Contents

    @@ -187,7 +187,7 @@

    -

    The HELPS package operates on 0.5 degree resolution, bias-corrected outputs from Earth System Models and General Circulation Models participating in the CMIP process. Several options to access such data exist: - The ISIMIP2b repository (https://data.isimip.org/search/tree/ISIMIP2b/InputData/climate/atmosphere/) contains outputs from CMIP5-era models (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, and MIROC5) for specific scenarios - The ISIMIP3b repository (https://data.isimip.org/search/tree/ISIMIP3b/InputData/climate/atmosphere/) contains outputs from CMIP6-era models (GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, and UKSEM1-0-LL) for specific scenarios - If a user wishes to explore other CMIP models or bias-correct model data against different observational data than that used by ISIMIP, the BASD python package (https://github.com/JGCRI/basd) is available for ease of use. BASD implements an extension of the bias adjustment and statistical downscaling method used in ISIMIP3b (ISIMIP3BASD, Lange 2021 https://zenodo.org/records/4686991 and https://gmd.copernicus.org/articles/12/3055/2019/). The ISIMIP3BASD code base can also be used directly. For additional information, please see https://www.isimip.org/documents/413/ISIMIP3b_bias_adjustment_fact_sheet_Gnsz7CO.pdf - If a user wishes to explore novel scenarios not covered by CMIP models or the ISIMIP collection, we suggest a combination of STITCHES emulation (https://github.com/JGCRI/stitches) and BASD bias correction and downscaling.

    +

    The HELPS package operates on 0.5 degree resolution, bias-corrected outputs from Earth System Models and General Circulation Models participating in the CMIP process. Several options to access such data exist: - The ISIMIP2b repository contains outputs from CMIP5-era models (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, and MIROC5) for specific scenarios - The ISIMIP3b repository contains outputs from CMIP6-era models (GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, and UKSEM1-0-LL) for specific scenarios - If a user wishes to explore other CMIP models or bias-correct model data against different observational data than that used by ISIMIP, the BASD python package is available for ease of use. BASD implements an extension of the bias adjustment and statistical downscaling method used in ISIMIP3b (ISIMIP3BASD, Lange 2021). The ISIMIP3BASD code base can also be used directly. For additional information, please see here - If a user wishes to explore novel scenarios not covered by CMIP models or the ISIMIP collection, we suggest a combination of STITCHES emulation and BASD bias correction and downscaling.

    HELPS has been tested with both ISIMIP data and outputs from BASD.

    Back to Contents


    diff --git a/docs/pkgdown.yml b/docs/pkgdown.yml index 941e684..28afdaf 100644 --- a/docs/pkgdown.yml +++ b/docs/pkgdown.yml @@ -3,4 +3,4 @@ pkgdown: 2.1.1 pkgdown_sha: ~ articles: HELPS-vignette: HELPS-vignette.html -last_built: 2025-01-14T18:18Z +last_built: 2025-01-14T20:58Z