-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathpost_processing.py
131 lines (110 loc) · 4.42 KB
/
post_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
import json
import multiprocessing as mp
from utils import iou_with_anchors
def load_json(file):
with open(file) as json_file:
data = json.load(json_file)
return data
def getDatasetDict(opt):
df = pd.read_csv(opt["video_info"])
json_data = load_json(opt["video_anno"])
database = json_data
video_dict = {}
for i in range(len(df)):
video_name = df.video.values[i]
video_info = database[video_name]
video_new_info = {}
video_new_info['duration_frame'] = video_info['duration_frame']
video_new_info['duration_second'] = video_info['duration_second']
video_new_info["feature_frame"] = video_info['feature_frame']
video_subset = df.subset.values[i]
video_new_info['annotations'] = video_info['annotations']
if video_subset == 'validation':
video_dict[video_name] = video_new_info
return video_dict
def soft_nms(df, alpha, t1, t2):
'''
df: proposals generated by network;
alpha: alpha value of Gaussian decaying function;
t1, t2: threshold for soft nms.
'''
df = df.sort_values(by="score", ascending=False)
tstart = list(df.xmin.values[:])
tend = list(df.xmax.values[:])
tscore = list(df.score.values[:])
rstart = []
rend = []
rscore = []
while len(tscore) > 1 and len(rscore) < 101:
max_index = tscore.index(max(tscore))
tmp_iou_list = iou_with_anchors(
np.array(tstart),
np.array(tend), tstart[max_index], tend[max_index])
for idx in range(0, len(tscore)):
if idx != max_index:
tmp_iou = tmp_iou_list[idx]
tmp_width = tend[max_index] - tstart[max_index]
if tmp_iou > t1 + (t2 - t1) * tmp_width:
tscore[idx] = tscore[idx] * np.exp(-np.square(tmp_iou) /
alpha)
rstart.append(tstart[max_index])
rend.append(tend[max_index])
rscore.append(tscore[max_index])
tstart.pop(max_index)
tend.pop(max_index)
tscore.pop(max_index)
newDf = pd.DataFrame()
newDf['score'] = rscore
newDf['xmin'] = rstart
newDf['xmax'] = rend
return newDf
def video_post_process(opt, video_list, video_dict):
for video_name in video_list:
df = pd.read_csv("./output/BMN_results/" + video_name + ".csv")
if len(df) > 1:
snms_alpha = opt["soft_nms_alpha"]
snms_t1 = opt["soft_nms_low_thres"]
snms_t2 = opt["soft_nms_high_thres"]
df = soft_nms(df, snms_alpha, snms_t1, snms_t2)
df = df.sort_values(by="score", ascending=False)
video_info = video_dict[video_name]
video_duration = float(video_info["duration_frame"] // 16 * 16) / video_info["duration_frame"] * video_info[
"duration_second"]
proposal_list = []
for j in range(min(100, len(df))):
tmp_proposal = {}
tmp_proposal["score"] = df.score.values[j]
tmp_proposal["segment"] = [max(0, df.xmin.values[j]) * video_duration,
min(1, df.xmax.values[j]) * video_duration]
proposal_list.append(tmp_proposal)
result_dict[video_name[2:]] = proposal_list
def BMN_post_processing(opt):
video_dict = getDatasetDict(opt)
video_list = list(video_dict.keys()) # [:100]
global result_dict
result_dict = mp.Manager().dict()
num_videos = len(video_list)
num_videos_per_thread = num_videos // opt["post_process_thread"]
processes = []
for tid in range(opt["post_process_thread"] - 1):
tmp_video_list = video_list[tid * num_videos_per_thread:(tid + 1) * num_videos_per_thread]
p = mp.Process(target=video_post_process, args=(opt, tmp_video_list, video_dict))
p.start()
processes.append(p)
tmp_video_list = video_list[(opt["post_process_thread"] - 1) * num_videos_per_thread:]
p = mp.Process(target=video_post_process, args=(opt, tmp_video_list, video_dict))
p.start()
processes.append(p)
for p in processes:
p.join()
result_dict = dict(result_dict)
output_dict = {"version": "VERSION 1.3", "results": result_dict, "external_data": {}}
outfile = open(opt["result_file"], "w")
json.dump(output_dict, outfile)
outfile.close()
# opt = opts.parse_opt()
# opt = vars(opt)
# BSN_post_processing(opt)