-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
204 lines (168 loc) · 8.24 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
from otree.api import (
models, widgets, BaseConstants, BaseSubsession, BaseGroup, BasePlayer,
Currency as c, currency_range
)
import random
import math
import numpy
import csv
from django.utils.translation import ugettext as _
author = 'Jana B. Jarecki'
doc = """
Risk sensitive foraging
"""
class Constants(BaseConstants):
name_in_url = 'rsf'
players_per_group = None
num_repetitions = 2
num_trials = 5
num_multitrial = num_trials * num_repetitions
num_oneshot = 6
num_rounds = num_multitrial + num_oneshot
point_label = _('Points')
trial_label = _('Choice')
action_label = _('Option')
initial_state = 0
num_actions = 2
lang = 'en'
class Subsession(BaseSubsession):
def creating_session(self):
# Executed at the very start, loops through each num_trial
if self.round_number == 1:
environments = self.load_choice_environment('risk_sensitive_foraging/environment.csv')
for p in self.get_players():
# Randomize what is shown when and where
rnd_environments = self.randomize_row_order(environments)
rnd_environments = environments
rnd_actions = self.randomize_col_order(rnd_environments, 0, Constants.num_actions)
#rnd_environments = numpy.array(rnd_environments)
p.participant.vars['actions'] = rnd_actions
p.participant.vars['budgets'] = numpy.array([x[2][0] for x in rnd_environments])
self.session.vars['num_actions'] = Constants.num_actions
self.session.vars['num_blocks'] = len(environments)
# Predefine random outcomes of all options in all trials
p.participant.vars['outcomes'] = [ [ p.draw_outcomes(gamble, Constants.num_trials + 1) for gamble in a] for a in rnd_actions]
# Initial values
p.successes = 0
p.block = 0
p.trial = 1
p.state = Constants.initial_state
p.budget = p.participant.vars['budgets'][p.block]
p.set_xp(p.participant.vars['actions'][p.block])
if (self.round_number > 1) & self.is_multitrial():
for p in self.get_players():
# At the start of each new trial
lastp = p.in_round(self.round_number - 1)
p.trial = lastp.trial + 1
p.block = lastp.block
p.budget = lastp.budget
p.set_xp(p.participant.vars['actions'][p.block])
if self.is_new_block():
# At the start of a new block
p.block = lastp.block + 1
p.trial = 1
p.state = Constants.initial_state
p.budget = p.participant.vars['budgets'][p.block]
p.set_xp(p.participant.vars['actions'][p.block])
if (self.round_number - 1) == Constants.num_multitrial:
critical_trials = self.load_choice_environment('risk_sensitive_foraging/critical_trials.csv')
for p in self.get_players():
rnd_critical_trials = self.randomize_row_order(critical_trials)
rnd_critical_actions = self.randomize_col_order(rnd_critical_trials, 0, Constants.num_actions)
rnd_critical_trials = numpy.array(rnd_critical_trials)
p.participant.vars['critical_actions'] = rnd_critical_actions
p.participant.vars['critical_budgets'] = numpy.array([x[2][0] for x in rnd_critical_trials])
p.participant.vars['critical_trials'] = numpy.array([x[2][1] for x in rnd_critical_trials])
p.participant.vars['critical_states'] = numpy.array([x[2][2] for x in rnd_critical_trials])
self.session.vars['critical_num_blocks'] = len(critical_trials)
# Initial values
p.block = 0
p.trial = p.participant.vars['critical_trials'][p.block]
p.state = p.participant.vars['critical_states'][p.block]
p.budget = p.participant.vars['critical_budgets'][p.block]
p.set_xp(p.participant.vars['critical_actions'][p.block])
if (self.round_number - 1) > Constants.num_multitrial:
for p in self.get_players():
lastp = p.in_round(self.round_number - 1)
p.block = lastp.block + 1
p.trial = p.participant.vars['critical_trials'][p.block]
p.state = p.participant.vars['critical_states'][p.block]
p.budget = p.participant.vars['critical_budgets'][p.block]
p.set_xp(p.participant.vars['critical_actions'][p.block])
def load_choice_environment(self, filepath):
with open(filepath) as csvfile:
next(csvfile)
the_environments = csv.reader(csvfile, delimiter=',', quoting=csv.QUOTE_NONNUMERIC)
environments = [[row[ :4], row[4:8], row[8: ]] for row in the_environments]
return environments
def randomize_row_order(self, x):
# x is the list with environments
rnd_x = x.copy()
random.shuffle(rnd_x) # Random order
return rnd_x
def randomize_col_order(self, x, first, last):
# x is the environment, first, last is the row index of the actions
x = [y[ first : last ] for y in x]
for a in x:
random.shuffle(a)
return x
def is_new_block(self):
return (self.round_number - 1) % Constants.num_trials == 0
def is_multitrial(self):
xx = (self.round_number - 1) < Constants.num_multitrial
print(" ---- is Multitrial is:", xx)
return xx
pass
class Group(BaseGroup):
pass
# Every round the playder object is re-initialized
class Player(BasePlayer):
block = models.IntegerField(doc = "Current block")
trial = models.IntegerField(doc = "Current trial (of 5)")
state = models.IntegerField(doc = "State before the current decision")
budget = models.IntegerField(doc = "Earnings requirement in current block")
choice = models.IntegerField(doc = "Choice in this trial, 0 = left option, 1 = right option")
outcome = models.IntegerField(doc = "Randomly drawn outcome of the chosen option given the choice in this trial")
successes = models.IntegerField(doc = "Number of blocks where the earnings requirement (budget) was reached")
left_x1 = models.IntegerField(doc = "Outcome 1 of the option that was shown on the left (option position was randomized across participants)")
left_x2 = models.IntegerField(doc = "Outcome 2 of the option that was shown on the left (option position was randomized across participants)")
left_p1 = models.FloatField(doc = "Probability of outcome 1 of the option that was shown on the left (option position was randomized across participants)")
left_p2 = models.FloatField(doc = "Probability of outcome 2 of the option that was shown on the left (option position was randomized across participants)")
right_x1 = models.IntegerField(doc = "Outcome 1 of the option that was shown on the right (option position was randomized across participants)")
right_x2 = models.IntegerField(doc = "Outcome 2 of the option that was shown on the right (option position was randomized across participants)")
right_p1 = models.FloatField(doc = "Probability of outcome 1 of the option that was shown on the right (option position was randomized across participants)")
right_p2 = models.FloatField(doc = "Probability of outcome 2 of the option that was shown on the right (option position was randomized across participants)")
def set_xp(self, actions):
a = actions[0]
self.left_x1 = a[0]
self.left_x2 = a[1]
self.left_p1 = a[2]
self.left_p2 = a[3]
a = actions[1]
self.right_x1 = a[0]
self.right_x2 = a[1]
self.right_p1 = a[2]
self.right_p2 = a[3]
def draw_outcomes(self, action, size):
x = action[ :2]
p = action[2: ][1]
indices = [0, 1, 0, 1, 1, 0, 1, 0, 1, 1]
#indices = numpy.random.binomial(n=1, p=p, size=size)
res = [x[i] for i in indices]
return res
def get_outcome(self):
self.outcome = self.participant.vars['outcomes'][self.block][self.choice][self.trial]
def get_last_state(self):
lastself = self.in_round(self.round_number - 1)
return lastself.state + lastself.outcome
def update_successes(self):
state = self.state + self.outcome
if state >= self.budget:
if self.round_number == 1:
self.successes += 1
else:
if self.state < self.budget: # self.state is the state at the beginning of this trial
self.successes += 1
def get_last_success(self):
return self.in_round(self.round_number - 1).successes
pass