-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcpu.tlv
299 lines (243 loc) · 13.4 KB
/
cpu.tlv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
\m4_TLV_version 1d: tl-x.org
\SV
// This code can be found in: https://github.com/stevehoover/RISC-V_MYTH_Workshop
m4_include_lib(['https://raw.githubusercontent.com/stevehoover/RISC-V_MYTH_Workshop/ecba3769fff373ef6b8f66b3347e8940c859792d/tlv_lib/risc-v_shell_lib.tlv'])
\SV
m4_makerchip_module // (Expanded in Nav-TLV pane.)
\TLV
// /====================\
// | Sum 1 to 9 Program |
// \====================/
//
// Program for MYTH Workshop to test RV32I
// Add 1,2,3,...,9 (in that order).
//
// Regs:
// r10 (a0): In: 0, Out: final sum
// r12 (a2): 10
// r13 (a3): 1..10
// r14 (a4): Sum
//
// External to function:
m4_asm(ADD, r10, r0, r0) // Initialize r10 (a0) to 0.
// Function:
m4_asm(ADD, r14, r10, r0) // Initialize sum register a4 with 0x0
m4_asm(ADDI, r12, r10, 1010) // Store count of 10 in register a2.
m4_asm(ADD, r13, r10, r0) // Initialize intermediate sum register a3 with 0
// Loop:
m4_asm(ADD, r14, r13, r14) // Incremental addition
m4_asm(ADDI, r13, r13, 1) // Increment intermediate register by 1
m4_asm(BLT, r13, r12, 1111111111000) // If a3 is less than a2, branch to label named <loop>
m4_asm(ADD, r10, r14, r0) // Store final result to register a0 so that it can be read by main program
m4_asm(SW, r0, r10, 10000) // Store the value of r10 into address 17.
m4_asm(LW, r17, r0, 10000) // Load the value from
// Optional:
// m4_asm(JAL, r7, 00000000000000000000) // Done. Jump to itself (infinite loop). (Up to 20-bit signed immediate plus implicit 0 bit (unlike JALR) provides byte address; last immediate bit should also be 0)
m4_define_hier(['M4_IMEM'], M4_NUM_INSTRS)
|cpu
@0
$reset = *reset;
// to initiate the pc to 0 after the reset signal is given (and not 1)
// i.e. initiating at 0 for the first non-reset inst
//$pc[31:0] = >>1$reset ? 32'b0 : (>>1$pc + 32'd4);
$pc[31:0] = >>1$reset ? 32'b0 :
>>3$valid_load ? >>3$inc_pc : // handling Mem R/W hazard similar to branch
>>3$valid_taken_br ? >>3$br_tgt_pc : // handling Control Flow hazard (brach and jump) emptying the 2 pipline
(>>3$valid_jump && >>3$is_jal) ? >>3$br_tgt_pc :
(>>3$valid_jump && >>3$is_jalr) ? >>3$jalr_tgt_pc :
(>>1$inc_pc);
// incremented by 4, last two bits always zero
$imem_rd_addr[M4_IMEM_INDEX_CNT-1:0] = $pc[M4_IMEM_INDEX_CNT+1:2];
$imem_rd_en = !$reset;
//to temporarily handle flow hazards (every thrid cycle instr gets executed)
//$start = (>>1$reset && !$reset) ? 1'b1: 1'b0;
//$valid = $reset ? 1'b0 : ($start ? 1'b1: >>3$valid);
@1
?$imem_rd_en
//Read instruction from instruction memory address pointed by PC
$instr[31:0] = $imem_rd_data[31:0];
// incrementing PC by decimal 4 for 32-bit address
$inc_pc[31:0] = $pc + 32'd4;
// check if instruction is I type by imposing condition on the op code [6:0]
// since the ISA is `base` type, first two LSB are set to '1'
$is_i_instr = $instr[6:2] ==? 5'b0000x ||
$instr[6:2] ==? 5'b001x0 ||
$instr[6:2] ==? 5'b11001;
$is_r_instr = $instr[6:2] ==? 5'b01011 ||
$instr[6:2] ==? 5'b011x0 ||
$instr[6:2] ==? 5'b10100;
$is_s_instr = $instr[6:2] ==? 5'b0100x;
$is_b_instr = $instr[6:2] ==? 5'b11000;
$is_j_instr = $instr[6:2] ==? 5'b11011;
$is_u_instr = $instr[6:2] ==? 5'b0x101;
// immediate addressing mode instr decode ref. 'riscv-spec'
$imm[31:0] = $is_i_instr ? {{21{$instr[31]}}, $instr[30:20]}:
$is_s_instr ? {{21{$instr[31]}}, $instr[30:25],$instr[11:7]}:
$is_b_instr ? {{20{$instr[31]}},$instr[7],$instr[30:25],$instr[11:8], {1'b0}}:
$is_u_instr ? { $instr[31:12],{12'b0}}:
$is_j_instr ? {{12{$instr[31]}}, $instr[19:12], $instr[20], $instr[30:25], $instr[24:21], {1'b0}}:
32'b0;
// instr decode other instr fields with validity
$rs2_valid = $is_r_instr || $is_s_instr || $is_r_instr || $is_b_instr;
$rs1_valid = $is_i_instr || $is_s_instr || $is_r_instr || $is_b_instr;
$funct3_valid = $is_i_instr || $is_r_instr || $is_s_instr || $is_b_instr;
$rd_valid = $is_i_instr || $is_r_instr || $is_j_instr || $is_u_instr;
$funct7_valid = $is_r_instr;
?$rs2_valid
$rs2[4:0] = $instr[24:20];
?$rs1_valid
$rs1[4:0] = $instr[19:15];
?$funct3_valid
$funct3[2:0] = $instr[14:12];
?$rd_valid
$rd[4:0] = $instr[11:7];
?$funct7_valid
$funct7[6:0] = $instr[31:25];
$opcode[6:0] = $instr[6:0];
$dec_bits[10:0] = {$funct7[5], $funct3, $opcode};
// decode instructions
$is_lui = $dec_bits ==? 11'bx_xxx_0110111;
$is_auipc = $dec_bits ==? 11'bx_xxx_0010111;
$is_jal = $dec_bits ==? 11'bx_xxx_1101111;
$is_jalr = $dec_bits ==? 11'bx_000_1100111;
$is_beq = $dec_bits ==? 11'bx_000_1100011;
$is_bne = $dec_bits ==? 11'bx_001_1100011;
$is_blt = $dec_bits ==? 11'bx_100_1100011;
$is_bge = $dec_bits ==? 11'bx_101_1100011;
$is_bltu = $dec_bits ==? 11'bx_110_1100011;
$is_bgeu = $dec_bits ==? 11'bx_111_1100011;
//$is_lb = $dec_bits ==? 11'bx_000_0000011;
//$is_lh = $dec_bits ==? 11'bx_001_0000011;
//$is_lw = $dec_bits ==? 11'bx_010_0000011;
//$is_lbu = $dec_bits ==? 11'bx_100_0000011;
//$is_lhu = $dec_bits ==? 11'bx_101_0000011;
$is_sb = $dec_bits ==? 11'bx_000_0100011;
$is_sh = $dec_bits ==? 11'bx_001_0100011;
$is_sw = $dec_bits ==? 11'bx_010_0100011;
$is_addi = $dec_bits ==? 11'bx_000_0010011;
$is_slti = $dec_bits ==? 11'bx_010_0010011;
$is_sltiu = $dec_bits ==? 11'bx_011_0010011;
$is_xori = $dec_bits ==? 11'bx_100_0010011;
$is_ori = $dec_bits ==? 11'bx_110_0010011;
$is_andi = $dec_bits ==? 11'bx_111_0010011;
$is_slli = $dec_bits ==? 11'b0_001_0010011;
$is_srli = $dec_bits ==? 11'b0_101_0010011;
$is_srai = $dec_bits ==? 11'b1_101_0010011;
$is_add = $dec_bits ==? 11'b0_000_0110011;
$is_sub = $dec_bits ==? 11'b1_000_0110011;
$is_sll = $dec_bits ==? 11'b0_001_0110011;
$is_slt = $dec_bits ==? 11'b0_010_0110011;
$is_sltu = $dec_bits ==? 11'b0_011_0110011;
$is_xor = $dec_bits ==? 11'b0_100_0110011;
$is_srl = $dec_bits ==? 11'b0_101_0110011;
$is_sra = $dec_bits ==? 11'b1_101_0110011;
$is_or = $dec_bits ==? 11'b0_110_0110011;
$is_and = $dec_bits ==? 11'b0_111_0110011;
// check for Jump Instr
$is_jump = $is_jal || $is_jalr;
// check for Load Instr
$is_load = $dec_bits ==? 11'bx_xxx_0000011;
@2
// Register File Read
// rd stands for read at times and destination register at others
// checking for validity of read (2 registers)
$rf_rd_en1 = $rs1_valid;
?$rf_rd_en1
$rf_rd_index1[4:0] = $rs1[4:0];
$rf_rd_en2 = $rs2_valid;
?$rf_rd_en2
$rf_rd_index2[4:0] = $rs2[4:0];
// Input Signals to the ALU
// taking care and checks for Read After Write Hazard (RAW) caused due to pipelining.
// Method: bypassing the register file completely if the previous instr has to write to it
// and connecting the value from the ALU of the previous cycle to src1 or src2
$src1_value[31:0] = (>>1$rf_wr_en && (>>1$rd == $rf_rd_index1)) ? >>1$result : $rf_rd_data1[31:0];
$src2_value[31:0] = (>>1$rf_wr_en && (>>1$rd == $rf_rd_index2)) ? >>1$result :$rf_rd_data2[31:0];
// computing Target PC for branch
$br_tgt_pc[31:0] = $pc + $imm;
// Jump Target PC
$jalr_tgt_pc[31:0] = $src1_value + $imm;
@3
// ALU computation for all the instr defined in the base ISA
// ref. 'riscv-spec'
$result[31:0] = $is_addi ? $src1_value + $imm:
($is_load || $is_s_instr) ? $src1_value + $imm: // handling Load/Store
$is_s_instr ? $src1_value + $imm:
$is_add ? $src1_value + $src2_value:
$is_sub ? $src1_value - $src2_value :
$is_sll ? $src1_value << $src2_value[4:0] :
$is_srl ? $src1_value >> $src2_value[4:0] :
$is_sltu ? $src1_value < $src2_value :
$is_sltiu ? $src1_value < $imm :
$is_lui ? {$imm[31:12], 12'b0} :
$is_auipc ? $pc + $imm :
$is_jal ? $pc + 4 :
$is_jalr ? $pc + 4 :
$is_andi ? $src1_value & $imm :
$is_ori ? $src1_value | $imm :
$is_xori ? $src1_value ^ $imm :
$is_slli ? $src1_value << $imm[5:0] :
$is_srli ? $src1_value >> $imm[5:0] :
$is_and ? $src1_value & $src2_value :
$is_or ? $src1_value | $src2_value :
$is_xor ? $src1_value ^ $src2_value :
$is_srai ? { {32{$src1_value[31]}}, $src1_value} >> $imm[4:0] :
$is_slt ? (( $src1_value[31] == $src2_value[31] ) ? ($is_sltu) : {31'b0, $src1_value[31]} ) :
$is_slti ? ($src1_value[31] == $imm[31]) ? ($is_sltiu) : {31'b0, $src1_value[31]} :
$is_sra ? { {32{$src1_value[31]}}, $src1_value} >> $src2_value[4:0]:
32'bx;
// Register File Write
// rd is checked for 5'b0 i.e. 0x register, if true the value
// is not written to the register since x0 is "always-zero"
// else rd_valid is assigned to rf_write_enable
$rf_wr_en = ($valid && $rd_valid && ($rd != 5'b0)) || >>2$valid_load;
?$rf_wr_en
$rf_wr_index[4:0] = !$valid ? >>2$rd[4:0] : $rd[4:0];
$rf_wr_data[31:0] = !$valid ? >>2$ld_data[31:0] : $result[31:0];
// Branch Instruction
// { riscv doesn't use conditional flags like x86 instead the uses branch Instr
// for comparision btw two registers }
// checking if conditional brach is taken (checking for all B-type instr)
$taken_br = $is_beq ? ($src1_value==$src2_value) :
$is_bne ? ($src1_value!=$src2_value) :
// comparison of bit ranges in verilog is default an unsigned operation
// so we need to compare the MSB values
$is_blt ? (($src1_value<$src2_value)^($src1_value[31]!=$src2_value[31])) :
$is_bge ? (($src1_value>=$src2_value)^($src1_value[31]!=$src2_value[31])) :
$is_bltu? ($src1_value<$src2_value) :
$is_bgeu? ($src1_value>=$src2_value): 1'b0 ;
// checking validity and taken branch
$valid_taken_br = $valid && $taken_br;
// validation for branch instruction to invalidate the current
// instructions in pipline after a brach is detected, similarly for load
$valid = !(>>1$valid_taken_br || >>2$valid_taken_br|| >>1$valid_load || >>2$valid_load || >>1$valid_jump || >>2$valid_jump);
$valid_load = ($valid && $is_load);
$valid_jump = ($valid && $is_jump);
@4
$dmem_rd_en = $valid_load;
$dmem_wr_en = $valid && $is_s_instr;
?$dmem_wr_en
$dmem_addr[3:0] = $result[5:2];
$dmem_wr_data[31:0] = $src2_value[31:0];
@5
?$dmem_rd_en
$ld_data[31:0] = $dmem_rd_data[31:0];
// Note: Because of the magic we are using for visualisation, if visualisation is enabled below,
// be sure to avoid having unassigned signals (which you might be using for random inputs)
// other than those specifically expected in the labs. You'll get strange errors for these.
// Assert these to end simulation (before Makerchip cycle limit).
//*passed = *cyc_cnt > 40;
*passed = |cpu/xreg[17]>>5$value == (1+2+3+4+5+6+7+8+9);
*failed = 1'b0;
// Macro instantiations for:
// o instruction memory
// o register file
// o data memory
// o CPU visualization
|cpu
m4+imem(@1) // Args: (read stage)
m4+rf(@2, @3) // Args: (read stage, write stage) - if equal, no register bypass is required
m4+dmem(@4) // Args: (read/write stage) 16 entries 32-Bit 1R/W per cycle
m4+cpu_viz(@4) // For visualisation, argument should be at least equal to the last stage of CPU logic. @4 would work for all labs.
\SV
endmodule