Skip to content

Latest commit

 

History

History
300 lines (255 loc) · 9.2 KB

File metadata and controls

300 lines (255 loc) · 9.2 KB

Mental Health Fitness-Tracker

The Mental Health Fitness Tracker project focuses on analyzing and predicting mental fitness levels of individuals from various countries with different mental disorders. It utilizes regression techniques to provide insights into mental health and make predictions based on the available data. The project also provides a platform for users to track their mental health and fitness levels. The project is built using Python.

Table of Contents

Installation

To use the code and run the examples, follow these steps:

  1. Ensure that you have Python 3.x installed on your system.
  2. Install the required libraries by running the following command:
pip install pandas numpy matplotlib seaborn scikit-learn plotly.express
  1. Download the project files and navigate to the project directory.

Usage

  1. Select the country and the mental disorder you want to analyze.
  2. Select the year range you want to analyze.
  3. Click on the "Analyze" button.
  4. The app will display the results of the analysis.
  5. Click on the "Predict" button to predict the mental fitness level of the selected country.
  6. The app will display the predicted mental fitness level of the selected country.
  7. Click on the "Track" button to track your mental fitness level.
  8. The app will display the results of the tracking.

Contributing

Contributions are what make the open source community such an amazing place to learn, inspire, and create. Any contributions you make are greatly appreciated.

  1. Fork the repo
  2. Clone the project
  3. Create your feature branch
  4. Commit your changes
  5. Push to the branch
  6. Open a pull request

References

PYTHON CODE

OPEN IN COLAB

[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1p73IXLADeEAJ5p1zHfVtmMgvzyhhLYgW?usp=drive_link)

IMPORTING REQUIRED LIBRARIES

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.express as px
import warnings
warnings.filterwarnings('ignore')

READING DATASETS

df1 = pd.read_csv("prevalence-by-mental-and-substance-use-disorder.csv")
df2 = pd.read_csv('mental-and-substance-use-as-share-of-disease.csv')

SHOW DATA SET

df1.head()
df2.head()

MERGING TWO DATASETS

data = pd.merge(df1, df2)
data.head()

DATA CLEANING

data.isnull().sum()
data.drop('Code', axis=1, inplace=True)
data.size,data.shape

RENAMED COLUMNS

data.set_axis(['Country','Year','Schizophrenia', 'Bipolar_disorder', 'Eating_disorder','Anxiety','drug_usage','depression','alcohol','mental_fitness'], axis='columns', inplace=True)
data.head()

EXPLORATORY ANALYSIS

plt.figure(figsize=(12,6))
sns.heatmap(data.corr(),annot=True,cmap='coolwarm')
plt.plot()
sns.jointplot(data,x="Schizophrenia",y="mental_fitness",kind="reg",color="g")
plt.show()
sns.jointplot(data,x='Bipolar_disorder',y='mental_fitness',kind='reg',color='m')
plt.show()
sns.jointplot(data,x='Eating_disorder',y='mental_fitness',kind='reg',color='blue')
plt.show()
sns.jointplot(data,x='Anxiety',y='mental_fitness',kind='reg',color='y')
plt.show()
sns.jointplot(data,x='drug_usage',y='mental_fitness',kind='reg',color='r')
plt.show()
sns.jointplot(data,x='depression',y='mental_fitness',kind='reg',color='orange')
plt.show()
sns.jointplot(data,x='alcohol',y='mental_fitness',kind='reg',color='black')
plt.show()
sns.pairplot(data,corner=True)
plt.show()
mean = data['mental_fitness'].mean()
mean
fig = px.pie(data, values='mental_fitness', names='Year')
fig.show()
fig=px.bar(data.head(10),x='Year',y='mental_fitness',color='Year',template='ggplot2')
fig.show()

YEARWISE VARIATIONS IN MENTAL FITNESS OF DIFFERENT COUNTRIES

fig = px.line(data, x="Year", y="mental_fitness", color='Country',markers=True,color_discrete_sequence=['red','blue'],template='plotly_dark')
fig.show()
df=data.copy()
df.head()
df.info()
from sklearn.preprocessing import LabelEncoder
l=LabelEncoder()
for i in df.columns:
    if df[i].dtype == 'object':
        df[i]=l.fit_transform(df[i])

X = df.drop('mental_fitness',axis=1)
y = df['mental_fitness']
from sklearn.model_selection import train_test_split
xtrain, xtest, ytrain, ytest = train_test_split(X, y, test_size=0.2, random_state=2)
X = df.drop('mental_fitness',axis=1)
y = df['mental_fitness']
from sklearn.model_selection import train_test_split
xtrain, xtest, ytrain, ytest = train_test_split(X, y, test_size=0.2, random_state=2)
print("xtrain: ", xtrain.shape)
print("xtest: ", xtest.shape)
print("ytrain: ", ytrain.shape)
print("ytest: ", ytest.shape)

LINEAR REGRESSION

from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
lr = LinearRegression()
lr.fit(xtrain,ytrain)

# model evaluation for training set
ytrain_pred = lr.predict(xtrain)
mse = mean_squared_error(ytrain, ytrain_pred)
rmse = (np.sqrt(mean_squared_error(ytrain, ytrain_pred)))
r2 = r2_score(ytrain, ytrain_pred)

print("The model performance for training set")
print("--------------------------------------")
print('MSE is {}'.format(mse))
print('RMSE is {}'.format(rmse))
print('R2 score is {}'.format(r2))
print("\n")

# model evaluation for testing set
ytest_pred = lr.predict(xtest)
mse = mean_squared_error(ytest, ytest_pred)
rmse = (np.sqrt(mean_squared_error(ytest, ytest_pred)))
r2 = r2_score(ytest, ytest_pred)

print("The model performance for testing set")
print("--------------------------------------")
print('MSE is {}'.format(mse))
print('RMSE is {}'.format(rmse))
print('R2 score is {}'.format(r2))

RANDOM FOREST REGRESSOR

from sklearn.ensemble import RandomForestRegressor
rf = RandomForestRegressor()
rf.fit(xtrain, ytrain)

# model evaluation for training set
ytrain_pred = rf.predict(xtrain)
mse = mean_squared_error(ytrain, ytrain_pred)
rmse = (np.sqrt(mean_squared_error(ytrain, ytrain_pred)))
r2 = r2_score(ytrain, ytrain_pred)

print("The model performance for training set")
print("--------------------------------------")
print('MSE is {}'.format(mse))
print('RMSE is {}'.format(rmse))
print('R2 score is {}'.format(r2))
print("\n")

# model evaluation for testing set
ytest_pred = rf.predict(xtest)
mse = mean_squared_error(ytest, ytest_pred)
rmse = (np.sqrt(mean_squared_error(ytest, ytest_pred)))
r2 = r2_score(ytest, ytest_pred)

print("The model performance for testing set")
print("--------------------------------------")
print('MSE is {}'.format(mse))
print('RMSE is {}'.format(rmse))
print('R2 score is {}'.format(r2))

Predicting Mental Fitness using This Machine Learning Random Forest Model.

np.random.seed(range(0, 100))
print("Welcome to Mental Fitness Tracker!\nPlease enter the details below to get started-->")
country = l.fit_transform([input("Enter the country name: ")])
year = int(input("Enter the year: "))
schizophrenia = (float(input("Enter the Schizophrenia rate in %(if not enter 0): ")))/100
bipolar_disorder = (float(input("Enter the Bipolar Disorder rate in %(if not enter 0): ")))/100
eating_disorder = (float(input("Enter the Eating Disorder rate in %(if not enter 0): ")))/100
anxiety = (float(input("Enter the Anxiety rate in %(if not enter 0): ")))/10
drug_usage = (float(input("Enter the Drug Usage rate in %(if not enter 0): ")))/100
depression = (float(input("Enter the Depression rate in %(if not enter 0): ")))/10
alcohol = (float(input("Enter the Alcohol rate in %(if not enter 0): ")))/100

data = [[country, year, schizophrenia, bipolar_disorder, eating_disorder, anxiety, drug_usage, depression, alcohol]]
data = pd.DataFrame(data, columns=['Country', 'Year', 'Schizophrenia', 'Bipolar_disorder', 'Eating_disorder', 'Anxiety', 'drug_usage', 'depression', 'alcohol'])

data['mental_fitness'] = rf.predict(data)
print("Mental fitness score in percent is: ", (data['mental_fitness'][0])*10)

CONCLUSION

The mental fitness of a person is dependent on various factors like schizophrenia, bipolar disorder, eating disorder, anxiety, drug usage, depression, alcohol, etc.

Here, we have used the Random Forest Regressor model to predict the mental fitness based on the above factors. The model has an accuracy of 99.99% which is quite good. The model can be used to predict the mental fitness. The model can be further improved by using more data and by using other algorithms.

License

Distributed under the ICS License. See LICENSE for more information.