From 503d2f372af00a84d7f00162131660cf2bc2a494 Mon Sep 17 00:00:00 2001 From: ice1000 Date: Sat, 28 Mar 2020 06:43:23 -0400 Subject: [PATCH] Use partially applied syntax extensively --- src/Algebra/Group/Category.ard | 2 +- src/Data/SeqColimit.ard | 2 +- src/Equiv.ard | 10 +++++----- src/Equiv/Fiber.ard | 2 +- src/Equiv/HalfAdjoint.ard | 2 +- src/Equiv/Sigma.ard | 4 ++-- src/HLevel.ard | 4 ++-- src/Homotopy/Hopf.ard | 2 +- src/Homotopy/Image.ard | 2 +- src/Homotopy/Join.ard | 4 ++-- src/Homotopy/Localization/Accessible.ard | 8 ++++---- src/Homotopy/Localization/BlakersMassey.ard | 2 +- src/Homotopy/Localization/Equiv.ard | 6 +++--- src/Homotopy/Localization/Separated.ard | 4 ++-- src/Homotopy/Localization/Universe.ard | 6 +++--- src/Homotopy/Loop.ard | 2 +- src/Homotopy/Pointed.ard | 4 ++-- src/Homotopy/Sphere/Circle.ard | 2 +- src/Paths.ard | 8 +++++--- 19 files changed, 39 insertions(+), 37 deletions(-) diff --git a/src/Algebra/Group/Category.ard b/src/Algebra/Group/Category.ard index 793b40ec..a27a26c5 100644 --- a/src/Algebra/Group/Category.ard +++ b/src/Algebra/Group/Category.ard @@ -31,7 +31,7 @@ (inv (f.func-+ (zro {f.Dom}) (zro {f.Dom})) *> pmap f.func (zro-right {f.Dom} (zro {f.Dom})) *> inv (zro-right {f.Cod} (f.func (zro {f.Dom})))) \func equals {A B : AddGroup} {f g : AbGroupHom A B} (p : \Pi (x : A) -> f.func x = g.func x) : f = g - => path (\lam i => \new AbGroupHom A B (\lam x => p x @ i) (pathInProp (\lam j => \Pi (x y : A) -> p (x + y) @ j = (p x @ j) + (p y @ j)) f.func-+ g.func-+ @ i)) + => path (\lam i => \new AbGroupHom A B (p __ @ i) (pathInProp (\lam j => \Pi (x y : A) -> p (x + y) @ j = (p x @ j) + (p y @ j)) f.func-+ g.func-+ @ i)) } \instance AddGroupCategory : Cat AddGroup diff --git a/src/Data/SeqColimit.ard b/src/Data/SeqColimit.ard index f9b04322..fcb7f289 100644 --- a/src/Data/SeqColimit.ard +++ b/src/Data/SeqColimit.ard @@ -109,7 +109,7 @@ inv (path (quotSC x)) *> t ==< inv (*>-assoc _ _ _) >== (inv (path (quotSC x)) *> path (quotSC x)) *> pmap inSC ((p n).2 x) *> points s p n ==< pmap (`*> pmap inSC ((p n).2 x) *> points s p n) (inv_*> (path (quotSC x))) >== idp *> pmap inSC ((p n).2 x) *> points s p n ==< idp_*> _ >== - pmap inSC ((p n).2 x) *> points s p n ==< pmap (`*> points s p n) (inv (Jl (\lam y q => h (s.f x) *> inv (h y) = pmap inSC q) (*>_inv _) ((p n).2 x))) >== + pmap inSC ((p n).2 x) *> points s p n ==< pmap (`*> points s p n) (inv (Jl (\lam y => h (s.f x) *> inv (h y) = pmap inSC __) (*>_inv _) ((p n).2 x))) >== (h (s.f x) *> inv (h (p n).1)) *> points s p n ==< *>-assoc _ _ _ >== h (s.f x) *> points s p (suc n) ==< *>-assoc _ _ _ >== path (quotSC (s.f x)) *> pmap inSC ((p (suc n)).2 (s.f x)) *> points s p (suc n) `qed diff --git a/src/Equiv.ard b/src/Equiv.ard index 26378828..29ddb649 100644 --- a/src/Equiv.ard +++ b/src/Equiv.ard @@ -13,7 +13,7 @@ \record Section (ret : B -> A) (ret_f : \Pi (x : A) -> ret (f x) = x) \extends Map \where { \func =Fiber {A B : \Type} (f : A -> B) : Section f = Fib (-o f) id - => path (iso (\lam (s : Section f) => Fib.make (-o f) s.ret (path (\lam i x => s.ret_f x @ i))) + => path (iso (\lam (s : Section f) => Fib.make (-o f) s.ret (path (\lam i => s.ret_f __ @ i))) (\lam z => \new Section f z.1 (\lam x => path ((z.2 @ __) x))) idpe idpe) @@ -28,7 +28,7 @@ \record Retraction (sec : B -> A) (f_sec : \Pi (y : B) -> f (sec y) = y) \extends Map \where { \func =Fiber {A B : \Type} (f : A -> B) : Retraction f = Fib (f `o-) id - => path (iso (\lam (s : Retraction f) => Fib.make (f `o-) s.sec (path (\lam i x => s.f_sec x @ i))) + => path (iso (\lam (s : Retraction f) => Fib.make (f `o-) s.sec (path (\lam i => s.f_sec __ @ i))) (\lam z => \new Retraction f z.1 (\lam x => path ((z.2 @ __) x))) idpe idpe) @@ -159,7 +159,7 @@ | A => f = f' | B => \Pi (a : A) -> f a = f' a | f p a => path ((p @ __) a) - | ret g => path (\lam i a => g a @ i) + | ret g => path (\lam i => g __ @ i) | ret_f _ => idp | f_sec _ => idp @@ -254,11 +254,11 @@ | f_sec p => pmap (pmap e2.f) (Retraction.f_sec {e1.isEmb a a'} (Retraction.sec {e2.isEmb (e1.f a) (e1.f a')} p)) *> Retraction.f_sec {e2.isEmb (e1.f a) (e1.f a')} p } -\func \infixr 1 >-> (A B : \Type) => Embedding {A} {B} +\func \infixr 1 >-> => Embedding {__} {__} \record Surjection (isSurj : \Pi (y : B) -> TruncP (Fib f y)) \extends Map -\func \infixr 1 ->> (A B : \Type) => Surjection {A} {B} +\func \infixr 1 ->> => Surjection {__} {__} \record ESEquiv \extends Embedding, Surjection \where { diff --git a/src/Equiv/Fiber.ard b/src/Equiv/Fiber.ard index 8028c2c0..f8eebef9 100644 --- a/src/Equiv/Fiber.ard +++ b/src/Equiv/Fiber.ard @@ -34,7 +34,7 @@ \let sec y => Contr.center {p y} \in \new QEquiv { | ret y => (sec y).1 - | ret_f x => pmap (\lam (r : Fib f (f x)) => r.1) (Contr.contraction {p (f x)} (x,idp)) + | ret_f x => pmap (__.1) (Contr.contraction {p (f x)} (x,idp)) | f_sec y => (sec y).2 } diff --git a/src/Equiv/HalfAdjoint.ard b/src/Equiv/HalfAdjoint.ard index 00d77ad3..96dc04f2 100644 --- a/src/Equiv/HalfAdjoint.ard +++ b/src/Equiv/HalfAdjoint.ard @@ -12,7 +12,7 @@ | f_sec y => inv (e.f_sec (e.f (e.ret y))) *> pmap e.f (e.ret_f (e.ret y)) *> e.f_sec y | f_ret_f=f_sec_f x => inv (rotatePathLeft ( pmap e.f (e.ret_f (e.ret (e.f x))) *> e.f_sec (e.f x) ==< pmap (pmap e.f __ *> e.f_sec (e.f x)) (homotopy_app-comm (\lam x => e.ret (e.f x)) e.ret_f x) >== - pmap (\lam x => e.f (e.ret (e.f x))) (e.ret_f x) *> e.f_sec (e.f x) ==< homotopy-isNatural (\lam y => e.f (e.sec y)) (\lam y => y) e.f_sec (pmap e.f (e.ret_f x)) >== + pmap (\lam x => e.f (e.ret (e.f x))) (e.ret_f x) *> e.f_sec (e.f x) ==< homotopy-isNatural (\lam y => e.f (e.sec y)) (\lam y => y) e.f_sec (pmap e.f (e.ret_f x)) >== e.f_sec (e.f (e.ret (e.f x))) *> pmap e.f (e.ret_f x) `qed )) diff --git a/src/Equiv/Sigma.ard b/src/Equiv/Sigma.ard index f3be6191..48e516da 100644 --- a/src/Equiv/Sigma.ard +++ b/src/Equiv/Sigma.ard @@ -30,13 +30,13 @@ \func pi-contr-left {A : \Type} (a : A) (B : \Pi (a' : A) -> a = a' -> \Type) : QEquiv {\Pi (a' : A) (p : a = a') -> B a' p} {B a idp} \cowith | f h => h a idp | ret b a' => Jl B b - | ret_f h => path (\lam i a' p => Jl (\lam x q => Jl B (h a idp) q = h x q) idp p @ i) + | ret_f h => path (\lam i a' => Jl (\lam x q => Jl B (h a idp) q = h x q) idp __ @ i) | f_sec => idpe \func pi-contr-right {A : \Type} (a' : A) (B : \Pi (a : A) -> a = a' -> \Type) : QEquiv {\Pi (a : A) (p : a = a') -> B a p} {B a' idp} \cowith | f h => h a' idp | ret b a => Jl.Jr B b - | ret_f h => path (\lam i a p => Jl.Jr (\lam x q => Jl.Jr B (h a' idp) q = h x q) idp p @ i) + | ret_f h => path (\lam i a => Jl.Jr (\lam x q => Jl.Jr B (h a' idp) q = h x q) idp __ @ i) | f_sec => idpe \lemma sigma-left {A A' : \Type} (B' : A' -> \Type) (p : A = A') diff --git a/src/HLevel.ard b/src/HLevel.ard index 690e3760..0d7a0937 100644 --- a/src/HLevel.ard +++ b/src/HLevel.ard @@ -45,7 +45,7 @@ }) } -\func isContr=>isProp {A : \Type} (c : Contr A) : isProp A => \lam a a' => inv (c.contraction a) *> c.contraction a' +\func isContr=>isProp {A : \Type} (c : Contr A) : isProp A => \lam a => inv (c.contraction a) *> c.contraction __ \lemma isContr'=>isProp {A : \Type} (c : A -> Contr A) : isProp A => \lam a => isContr=>isProp (c a) a @@ -67,7 +67,7 @@ \func isProp=>HLevel_-2+1 (A : \Type) (p : isProp A) (a a' : A) : Contr (a = a') => \new Contr (a = a') { | center => inv (p a a) *> p a a' - | contraction => Jl (\lam x q => inv (p a a) *> p a x = q) (inv_*> (p a a)) + | contraction => Jl (inv (p a a) *> p a __ = __) (inv_*> (p a a)) } \lemma HLevel_-1=>HLevel_-2+1 (A : \Type) (n : Nat) (p : A ofHLevel_-1+ n) : A ofHLevel_-2+ suc n \elim n diff --git a/src/Homotopy/Hopf.ard b/src/Homotopy/Hopf.ard index 1d1b94f0..122d7721 100644 --- a/src/Homotopy/Hopf.ard +++ b/src/Homotopy/Hopf.ard @@ -99,7 +99,7 @@ \let | e : HAEquiv (`* a) => HSpaceConn-right a | p => pmap totalJoin (ppglue (e.sec a', a) *> pmap (\lam y => pinr ((),y)) (e.f_sec a')) ==< pmap_*>-comm totalJoin (ppglue (e.sec a', a)) (pmap (\lam y => pinr ((),y)) (e.f_sec a')) >== - jglue a (e.sec a' * a) *> pmap jinr (e.f_sec a') ==< Jl (\lam x p => jglue a (e.sec a' * a) *> pmap jinr p = jglue a x) idp (e.f_sec a') >== + jglue a (e.sec a' * a) *> pmap jinr (e.f_sec a') ==< Jl (\lam x => jglue a (e.sec a' * a) *> pmap jinr __ = jglue a x) idp (e.f_sec a') >== jglue a a' `qed \in path (p @ __ @ i) diff --git a/src/Homotopy/Image.ard b/src/Homotopy/Image.ard index 8f4d5499..e64e978a 100644 --- a/src/Homotopy/Image.ard +++ b/src/Homotopy/Image.ard @@ -82,5 +82,5 @@ \lemma cod-map-emb {A B : \Type} (S : A -> B -> \Type) : Embedding (cod-map S) => MData.cod-map-emb (\lam {F} b => idEquiv {F b}) (\lam {F} => \let p b : Equiv-to-= (idEquiv {F b}) = idp => univalence.ret_f idp - \in path (\lam i => path (\lam j b => p b @ i @ j))) + \in path (\lam i => path (\lam j => p __ @ i @ j))) } diff --git a/src/Homotopy/Join.ard b/src/Homotopy/Join.ard index 3204e509..01a18e19 100644 --- a/src/Homotopy/Join.ard +++ b/src/Homotopy/Join.ard @@ -37,7 +37,7 @@ (pmap jinr (B.contraction b)) -- bottom edge (idpe (jinr B.center)) -- left edge (jglue a b) -- right edge - (Jl (\lam x p => inv (jglue a B.center) = pmap jinr p *> inv (jglue a x)) (inv (idp_*> _)) (B.contraction b)) @ i + (Jl (\lam x => inv (jglue a B.center) = pmap jinr __ *> inv (jglue a x)) (inv (idp_*> _)) (B.contraction b)) @ i } \func Join_Sphere0 (A : \Type) : QEquiv {Join (Sphere 0) A} {Susp A} \cowith @@ -174,7 +174,7 @@ (path (\lam j => path (\lam i => jinl (pglue (a,b) (squeeze (squeezeR j i) n))))) right = path (\lam j => path (pglue (pglue (a,b) (squeeze j n), c))) - ) (Jl (\lam y q => Jl.def (\lam x p => Cube2 p p idp idp) idp q = idp) idp (jglue (jinl a) c)) right + ) (Jl (\lam y => Jl.def (\lam x p => Cube2 p p idp idp) idp __ = idp) idp (jglue (jinl a) c)) right \in path ((Jl (\lam y q => s1 q = s2 q) idp (jglue b c) *> proof) @ __ @ j @ i) \func rightLeftRight {A B C : \Type} (j : Join A (Join B C)) : leftToRight (rightToLeft j) = j diff --git a/src/Homotopy/Localization/Accessible.ard b/src/Homotopy/Localization/Accessible.ard index 415126db..9201b491 100644 --- a/src/Homotopy/Localization/Accessible.ard +++ b/src/Homotopy/Localization/Accessible.ard @@ -22,7 +22,7 @@ | ret_f g => \let p s => path (isExt {famHat} {A} {inr j} (rec (ext {famHat} {A} {inl j} (g `o` F j)) g (\lam x => path (isExt {famHat} {A} {inl j} (g `o` F j) x))) s) \in path (\lam i y => (inv (p (pinl y)) *> p (pinr y)) @ i) - | f_sec f => path (\lam i x => isExt {famHat} {A} {inl j} f x i) + | f_sec f => path (\lam i => isExt {famHat} {A} {inl j} f __ i) } } | inL => alpha {famHat} @@ -62,18 +62,18 @@ | alpha a => K a | ext {j} f y => \let p x => path (\lam i => H1 (isExt f x i)) <* dataExt-unique H1 H2 K (f x) *> inv (path (\lam i => H2 (isExt f x i))) - \in path (\lam i => (Equiv.sec {pmapEquiv (Z.local j) {H1 `o` ext f} {H2 `o` ext f}} (path (\lam i' x => p x @ i')) @ i) y) + \in path (\lam i => (Equiv.sec {pmapEquiv (Z.local j) {H1 `o` ext f} {H2 `o` ext f}} (path (\lam i' => p __ @ i')) @ i) y) | isExt {j} f x i => \let | p x => path (\lam i => H1 (isExt f x i)) <* dataExt-unique H1 H2 K (f x) *> inv (path (\lam i => H2 (isExt f x i))) | e : Equiv {H1 `o` ext f = H2 `o` ext f} => pmapEquiv (Z.local j) | q => path (\lam i => (e.sec (path (\lam i' x => p x @ i')) @ i) (F j x)) - | s : q = p x => path (\lam k => path (\lam i => (e.f_sec (path (\lam i' x => p x @ i')) @ k @ i) x)) + | s : q = p x => path (\lam k => path (\lam i => (e.f_sec (path (\lam i' => p __ @ i')) @ k @ i) x)) \in Cube2.map q (dataExt-unique H1 H2 K (f x)) (path (\lam i' => H1 (isExt f x i'))) (path (\lam i' => H2 (isExt f x i'))) s @ i \lemma alpha-equiv {fam : Family} {A : \Type} {Z : Local} : Equiv {LData A -> Z} {A -> Z} (-o alpha) => \new QEquiv { | ret => dataExt - | ret_f h => path (\lam i d => dataExt-unique (dataExt (h `o` alpha)) h (\lam _ => idp) d @ i) + | ret_f h => path (\lam i => dataExt-unique (dataExt (h `o` alpha)) h (\lam _ => idp) __ @ i) | f_sec _ => idp } diff --git a/src/Homotopy/Localization/BlakersMassey.ard b/src/Homotopy/Localization/BlakersMassey.ard index 0727e0c9..04890078 100644 --- a/src/Homotopy/Localization/BlakersMassey.ard +++ b/src/Homotopy/Localization/BlakersMassey.ard @@ -231,6 +231,6 @@ \lemma code-contr {w : PO} (p : pinl x0 = w) : Contr (code p) \cowith | center => code-center p | contraction => transport (\lam t => \Pi (c : code t.2) -> code-center t.2 = c) (isContr=>isProp (lsigma {PO} (pinl x0)) (pinr y0, pbMap q0) (w, p)) - (\lam c => remove_inL (\lam _ => code-center (pbMap q0)) (\lam c => c) (code-path (pbMap q0)) c) + (remove_inL (\lam _ => code-center (pbMap q0)) (\lam c => c) (code-path (pbMap q0))) } } diff --git a/src/Homotopy/Localization/Equiv.ard b/src/Homotopy/Localization/Equiv.ard index 97cf8e59..d8c36910 100644 --- a/src/Homotopy/Localization/Equiv.ard +++ b/src/Homotopy/Localization/Equiv.ard @@ -46,7 +46,7 @@ -- | A map between local types is a local equivalence if and only if it is an equivalence \lemma localTypesEquiv {U : Universe} {A B : Local} (f : A -> B) : isLocalEquiv f = Equiv f - => propExt (dir f) (\lam (e : Equiv f) C => -o_Equiv {C} e) + => propExt (dir f) (\lam (e : Equiv f) => -o_Equiv {__} e) \where { -- | A local equivalence between local types is an equivalence \lemma dir {U : Universe} {A B : Local} (f : A -> B) (p : isLocalEquiv f) : Equiv f @@ -56,11 +56,11 @@ \in \new QEquiv { | ret => g | ret_f a => path ((g_f @ __) a) - | f_sec b => path (\lam i => (( + | f_sec b => path ((( f `o` g ==< inv (Equiv.ret_f {p B} (f `o` g)) >== H (f `o` g `o` f) ==< pmap (\lam t => H (f `o` t)) g_f >== H f ==< Equiv.ret_f {p B} id >== - id `qed) @ i) b) + id `qed) @ __) b) } } diff --git a/src/Homotopy/Localization/Separated.ard b/src/Homotopy/Localization/Separated.ard index 148c7bf8..4be358a6 100644 --- a/src/Homotopy/Localization/Separated.ard +++ b/src/Homotopy/Localization/Separated.ard @@ -49,8 +49,8 @@ \case f.isSurj b, f.isSurj b' \with { | inP (a,q), inP (a',q') => transport2 (\lam x x' => isLocal (x = x')) q q' (local {(p a a').1}) } - \in (\new Local { | local => B-local }, \new Localization { | local-univ C => Extension.contr-equiv f.f (\lam g b => - \case f.isSurj b \with { + \in (\new Local { | local => B-local }, \new Localization { | local-univ C => Extension.contr-equiv f.f (\lam g => + \case f.isSurj __ \with { | inP (a',q) => later rewriteI q (coe (\lam i => Contr (\Sigma (c : C) (\Pi (a : f.A) -> inv (Equiv-to-= (local-univ {(p a a').2} (\new Local (g a = c) (local {C} (g a) c)))) @ i))) (coe (\lam i => Contr (\Sigma (c : C) (inv (QEquiv-to-= (pi-contr-right a' (\lam x _ => g x = c))) @ i))) (lsigma (g a')) right) right) }) }) diff --git a/src/Homotopy/Localization/Universe.ard b/src/Homotopy/Localization/Universe.ard index b97a5ba2..2cd034d7 100644 --- a/src/Homotopy/Localization/Universe.ard +++ b/src/Homotopy/Localization/Universe.ard @@ -30,10 +30,10 @@ \func lift-prop {Z : Local {U}} (f : S -> Z) (x : S) : lift f (inL x) = f x => path (\lam i => (Equiv.f_sec {local-univ Z} f @ i) x) \func remove_inL {Z : Local {U}} (f g : S' -> Z) (p : \Pi (x : S) -> f (inL x) = g (inL x)) (x : S') : f x = g x - => path (\lam i => (Equiv.sec {pmapEquiv (local-univ Z) {f} {g}} (path (\lam i x => p x @ i)) @ i) x) + => path (\lam i => (Equiv.sec {pmapEquiv (local-univ Z) {f} {g}} (path (\lam i => p __ @ i)) @ i) x) \func remove_inL-coh {Z : Local {U}} (f g : S' -> Z) (p : \Pi (x : S) -> f (inL x) = g (inL x)) (x : S) : remove_inL f g p (inL x) = p x - => \let t => Equiv.f_sec {pmapEquiv (local-univ Z) {f} {g}} (path (\lam i x => p x @ i)) + => \let t => Equiv.f_sec {pmapEquiv (local-univ Z) {f} {g}} (path (\lam i => p __ @ i)) \in pmap (\lam q => path ((q @ __) x)) t } \where { \use \level levelProp {U : Universe} (X : \Type) (l1 l2 : Localization X) : l1 = l2 @@ -50,7 +50,7 @@ | p2 i => local {pathInProp (\lam j => Local (p1 @ j)) l1.S' l2.S' @ i} | q1 : l1.S' = {Local} l2.S' => path (\lam i => \new Local (p1 @ i) (p2 i)) | q2 x => transport_pi {Local} (\lam _ => X) (\lam Y => Y) q1 l1.inL x *> lift-prop l2.inL x - | q2' i => pathOver (path (\lam j x => q2 x @ j)) @ i + | q2' i => pathOver (path (\lam j => q2 __ @ j)) @ i \in path (\lam i => \new Localization X (q1 @ i) (q2' i) (local-univ {pathInProp (\lam j => Localization X (q1 @ j) (q2' j)) l1 l2 @ i})) } diff --git a/src/Homotopy/Loop.ard b/src/Homotopy/Loop.ard index fe36560d..36429123 100644 --- a/src/Homotopy/Loop.ard +++ b/src/Homotopy/Loop.ard @@ -26,7 +26,7 @@ (c : \Pi (x0 : X) -> Contr (iterl Loop n (\new Pointed X x0))) : X ofHLevel_-1+ n \elim n | 0 => isContr'=>isProp c - | suc n => \lam x x' => loop-level-iter n (\lam x=x' => Jl (\lam x'' x=x'' => Contr (iterl Loop n (\new Pointed (x = x'') x=x''))) (c x) x=x') + | suc n => \lam x x' => loop-level-iter n (Jl (\lam x'' x=x'' => Contr (iterl Loop n (\new Pointed (x = x'') x=x''))) (c x)) \lemma loop-level-iter-inv {X : \Type} (n : Nat) (h : X ofHLevel_-1+ n) (x0 : X) : Contr (iterl Loop n (\new Pointed X x0)) \elim n diff --git a/src/Homotopy/Pointed.ard b/src/Homotopy/Pointed.ard index 535731b3..3e1416d5 100644 --- a/src/Homotopy/Pointed.ard +++ b/src/Homotopy/Pointed.ard @@ -15,8 +15,8 @@ \func \infixr 1 ->* (A B : Pointed) => \Sigma (f : A -> B) (f base = base) \where { \func ext {A B : Pointed} {f g : A ->* B} (p : \Pi (x : A) -> f.1 x = g.1 x) (q : p base *> g.2 = f.2) : f = g => - \let | p' => path (\lam i x => p x @ i) - | q' => Jl (\lam _ p'' => rewriteF p'' f.2 = inv (pmap (\lam (h : A -> B) => h base) p'') *> f.2) + \let | p' => path (\lam i => p __ @ i) + | q' => Jl (\lam _ p'' => rewriteF p'' f.2 = inv (pmap (__ base) p'') *> f.2) (inv (idp_*> _)) p' *> rotatePathLeft (inv q) \in path (\lam i => (p' @ i, pathOver q' @ i)) } diff --git a/src/Homotopy/Sphere/Circle.ard b/src/Homotopy/Sphere/Circle.ard index 134d55bb..fecedbc4 100644 --- a/src/Homotopy/Sphere/Circle.ard +++ b/src/Homotopy/Sphere/Circle.ard @@ -66,7 +66,7 @@ \func decode (x : Sphere1) : code x -> base1 = x \elim x | base1 => wind - | loop i => pathOver (path (\lam j x => decode_loop x @ j)) @ i + | loop i => pathOver (path (\lam j => decode_loop __ @ j)) @ i \where { \func wind_loop (n : Int) : wind n *> path loop = wind (isuc n) | pos _ => idp diff --git a/src/Paths.ard b/src/Paths.ard index a0535f8a..76e4961c 100644 --- a/src/Paths.ard +++ b/src/Paths.ard @@ -1,3 +1,5 @@ +\import Function + \func idpe {A : \Type} (a : A) : a = a => idp \func pmap {A B : \Type} (f : A -> B) {a a' : A} (p : a = a') : f a = f a' => path (\lam i => f (p @ i)) @@ -114,7 +116,7 @@ \func homotopy_app-comm {A : \Type} (f : A -> A) (h : \Pi (a : A) -> f a = a) (a : A) : h (f a) = pmap f (h a) => h (f a) ==< pmap (h (f a) *>) (inv (*>_inv (h a))) >== h (f a) *> (h a *> inv (h a)) ==< inv (*>-assoc (h (f a)) (h a) (inv (h a))) >== - (h (f a) *> h a) *> inv (h a) ==< pmap (`*> inv (h a)) (inv (homotopy-isNatural f (\lam a => a) h (h a))) >== + (h (f a) *> h a) *> inv (h a) ==< pmap (`*> inv (h a)) (inv (homotopy-isNatural f id h (h a))) >== (pmap f (h a) *> h a) *> inv (h a) ==< *>-assoc (pmap f (h a)) (h a) (inv (h a)) >== pmap f (h a) *> (h a *> inv (h a)) ==< pmap (pmap f (h a) *>) (*>_inv (h a)) >== pmap f (h a) `qed @@ -137,7 +139,7 @@ \func transport_pi2 {A : \Type} (B C : A -> \Type) {a a' : A} (p : a = a') (f : B a -> C a) (g : B a' -> C a') (t : \Pi (x : B a) -> transport C p (f x) = g (transport B p x)) : transport (\lam y => B y -> C y) p f = g \elim p - | idp => path (\lam i x => t x @ i) + | idp => path (\lam i => t __ @ i) \func transport_path-right {A : \Type} {a0 a b : A} (p : a = b) (q : a0 = a) : transport (a0 =) p q = q *> p @@ -160,7 +162,7 @@ | idp => inv (gf b) \func funExt {A : \Type} (B : A -> \Type) (f g : \Pi (x : A) -> (B x)) (h : \Pi (x : A) -> (f x = g x)) : f = g => - path (\lam i a => h a @ i) + path (\lam i => h __ @ i) \func SigmaExt {A : \Type} (B : A -> \Type) (x y : \Sigma (a : A) (B a)) (p : x.1 = y.1) (q : transport B p x.2 = y.2) : x = y => path (\lam i => (p @ i, pathOver q @ i))