-
Notifications
You must be signed in to change notification settings - Fork 113
Benchmarks
Vyacheslav Lukianov edited this page Jul 3, 2016
·
18 revisions
JMH is used to build and run benchmarks. Benchmark results are obtained on a PC running under Windows 7 with Intel(R) Core(TM) i7-3770 3.4 GHz CPU and 64-bit JRE build 1.8.0_77-b03 with the following parameters: -Xms1g -Xmx1g
. Nothing else is configured, tests run with default settings. To get results in your environment, run in the project root directory:
./gradlew testBenchmarksJMH
Tokyo Cabinet Benchmark is useful for comparison of performance of key/value storages. For one million 8-char string keys ('00000000', '00000001', etc.) and values equal to the keys, 4 operations are measured:
- writing all key/value pairs in ascedning order;
- writing all key/value pairs in random order;
- reading all key/value pairs in ascedning order;
- reading all key/value pairs in random order.
Currently benchmark results are available for Xodus stores with and without key prefixing, Berkeley DB JE databases with and without key prefixing, MapDb tree map, and Chronicle Map.
# Run complete. Total time: 02:13:06
Benchmark Mode Cnt Score Error Units
chronicle.JMHChronicleMapTokyoCabinetReadBenchmark.randomRead ss 16 0.829 - 0.075 s/op
chronicle.JMHChronicleMapTokyoCabinetReadBenchmark.successiveRead ss 16 0.098 - 0.005 s/op
chronicle.JMHChronicleMapTokyoCabinetWriteBenchmark.randomWrite ss 16 1.238 - 0.133 s/op
chronicle.JMHChronicleMapTokyoCabinetWriteBenchmark.successiveWrite ss 16 1.184 - 0.099 s/op
env.JMHEnvTokyoCabinetReadBenchmark.randomRead ss 60 2.692 - 0.045 s/op
env.JMHEnvTokyoCabinetReadBenchmark.successiveRead ss 60 0.117 - 0.005 s/op
env.JMHEnvTokyoCabinetWriteBenchmark.randomWrite ss 60 2.208 - 0.046 s/op
env.JMHEnvTokyoCabinetWriteBenchmark.successiveWrite ss 60 0.699 - 0.018 s/op
env.JMHEnvWithPrefixingTokyoCabinetReadBenchmark.randomRead ss 60 1.289 - 0.020 s/op
env.JMHEnvWithPrefixingTokyoCabinetReadBenchmark.successiveRead ss 60 0.292 - 0.048 s/op
env.JMHEnvWithPrefixingTokyoCabinetWriteBenchmark.randomWrite ss 60 1.661 - 0.074 s/op
env.JMHEnvWithPrefixingTokyoCabinetWriteBenchmark.successiveWrite ss 60 0.777 - 0.064 s/op
je.JMH_JETokyoCabinetReadBenchmark.randomRead ss 60 3.208 - 0.027 s/op
je.JMH_JETokyoCabinetReadBenchmark.successiveRead ss 60 1.252 - 0.189 s/op
je.JMH_JETokyoCabinetWriteBenchmark.randomWrite ss 60 5.844 - 0.145 s/op
je.JMH_JETokyoCabinetWriteBenchmark.successiveWrite ss 60 3.441 - 0.187 s/op
je.JMH_JEWithPrefixingTokyoCabinetReadBenchmark.randomRead ss 60 3.504 - 0.070 s/op
je.JMH_JEWithPrefixingTokyoCabinetReadBenchmark.successiveRead ss 60 1.302 - 0.200 s/op
je.JMH_JEWithPrefixingTokyoCabinetWriteBenchmark.randomWrite ss 60 5.905 - 0.205 s/op
je.JMH_JEWithPrefixingTokyoCabinetWriteBenchmark.successiveWrite ss 60 3.411 - 0.209 s/op
mapdb.JMHMapDbTokyoCabinetReadBenchmark.randomRead ss 16 6.705 - 0.196 s/op
mapdb.JMHMapDbTokyoCabinetReadBenchmark.successiveRead ss 16 0.274 - 0.091 s/op
mapdb.JMHMapDbTokyoCabinetWriteBenchmark.randomWrite ss 16 21.822 - 0.380 s/op
mapdb.JMHMapDbTokyoCabinetWriteBenchmark.successiveWrite ss 16 26.588 - 0.517 s/op