forked from kentonl/e2e-coref
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluator.py
executable file
·67 lines (51 loc) · 2.08 KB
/
evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#!/usr/bin/env python
import os
import re
import sys
sys.path.append(os.getcwd())
import time
import random
import shutil
import numpy as np
import tensorflow as tf
import coref_model as cm
import util
def copy_checkpoint(source, target):
for ext in (".index", ".data-00000-of-00001"):
shutil.copyfile(source + ext, target + ext)
if __name__ == "__main__":
util.set_gpus()
if len(sys.argv) > 1:
name = sys.argv[1]
print "Running experiment: {} (from command-line argument).".format(name)
else:
name = os.environ["EXP"]
print "Running experiment: {} (from environment variable).".format(name)
config = util.get_config("experiments.conf")[name]
config["log_dir"] = util.mkdirs(os.path.join(config["log_root"], name))
util.print_config(config)
model = cm.CorefModel(config)
saver = tf.train.Saver()
log_dir = config["log_dir"]
writer = tf.summary.FileWriter(log_dir, flush_secs=20)
evaluated_checkpoints = set()
max_f1 = 0
checkpoint_pattern = re.compile(".*model.ckpt-([0-9]*)\Z")
with tf.Session() as session:
while True:
ckpt = tf.train.get_checkpoint_state(log_dir)
if ckpt and ckpt.model_checkpoint_path and ckpt.model_checkpoint_path not in evaluated_checkpoints:
print "Evaluating {}".format(ckpt.model_checkpoint_path)
# Move it to a temporary location to avoid being deleted by the training supervisor.
tmp_checkpoint_path = os.path.join(log_dir, "model.tmp.ckpt")
copy_checkpoint(ckpt.model_checkpoint_path, tmp_checkpoint_path)
global_step = int(checkpoint_pattern.match(ckpt.model_checkpoint_path).group(1))
saver.restore(session, ckpt.model_checkpoint_path)
eval_summary, f1 = model.evaluate(session)
if f1 > max_f1:
max_f1 = f1
copy_checkpoint(tmp_checkpoint_path, os.path.join(log_dir, "model.max.ckpt"))
print "Current max F1: {:.2f}".format(max_f1)
writer.add_summary(eval_summary, global_step)
print "Evaluation written to {} at step {}".format(log_dir, global_step)
evaluated_checkpoints.add(ckpt.model_checkpoint_path)