由于 APIC中断控制器
有点小复杂,所以本文主要通过 8259A中断控制器
来介绍Linux对中断的处理过程。
前面说过,8259A中断控制器
由两片 8259A 风格的外部芯片以 级联
的方式连接在一起,每个芯片可处理多达 8 个不同的 IRQ(中断请求),所以可用 IRQ 线的个数达到 15 个。如下图:
在内核中每条IRQ线由结构体 irq_desc_t
来描述,irq_desc_t
定义如下:
typedef struct {
unsigned int status; /* IRQ status */
hw_irq_controller *handler;
struct irqaction *action; /* IRQ action list */
unsigned int depth; /* nested irq disables */
spinlock_t lock;
} irq_desc_t;
下面介绍一下 irq_desc_t
结构各个字段的作用:
status
: IRQ线的状态。handler
: 类型为hw_interrupt_type
结构,表示IRQ线对应的硬件相关处理函数,比如8259A中断控制器
接收到一个中断信号时,需要发送一个确认信号才会继续接收中断信号的,发送确认信号的函数就是hw_interrupt_type
中的ack
函数。action
: 类型为irqaction
结构,中断信号的处理入口。由于一条IRQ线可以被多个硬件共享,所以action
是一个链表,每个action
代表一个硬件的中断处理入口。depth
: 防止多次开启和关闭IRQ线。lock
: 防止多核CPU同时对IRQ进行操作的自旋锁。
hw_interrupt_type
这个结构与硬件相关,这里就不作介绍了,我们来看看 irqaction
这个结构:
struct irqaction {
void (*handler)(int, void *, struct pt_regs *);
unsigned long flags;
unsigned long mask;
const char *name;
void *dev_id;
struct irqaction *next;
};
下面说说 irqaction
结构各个字段的作用:
handler
: 中断处理的入口函数,handler
的第一个参数是中断号,第二个参数是设备对应的ID,第三个参数是中断发生时由内核保存的各个寄存器的值。flags
: 标志位,用于表示irqaction
的一些行为,例如是否能够与其他硬件共享IRQ线。name
: 用于保存中断处理的名字。dev_id
: 设备ID。next
: 每个硬件的中断处理入口对应一个irqaction
结构,由于多个硬件可以共享同一条IRQ线,所以这里通过next
字段来连接不同的硬件中断处理入口。
irq_desc_t
结构关系如下图:
在内核中,可以通过 setup_irq()
函数来注册一个中断处理入口。setup_irq()
函数代码如下:
int setup_irq(unsigned int irq, struct irqaction * new)
{
int shared = 0;
unsigned long flags;
struct irqaction *old, **p;
irq_desc_t *desc = irq_desc + irq;
...
spin_lock_irqsave(&desc->lock,flags);
p = &desc->action;
if ((old = *p) != NULL) {
if (!(old->flags & new->flags & SA_SHIRQ)) {
spin_unlock_irqrestore(&desc->lock,flags);
return -EBUSY;
}
do {
p = &old->next;
old = *p;
} while (old);
shared = 1;
}
*p = new;
if (!shared) {
desc->depth = 0;
desc->status &= ~(IRQ_DISABLED | IRQ_AUTODETECT | IRQ_WAITING);
desc->handler->startup(irq);
}
spin_unlock_irqrestore(&desc->lock,flags);
register_irq_proc(irq); // 注册proc文件系统
return 0;
}
setup_irq()
函数比较简单,就是通过 irq
号来查找对应的 irq_desc_t
结构,并把新的 irqaction
连接到 irq_desc_t
结构的 action
链表中。要注意的是,如果设备不支持共享IRQ线(也即是 flags
字段没有设置 SA_SHIRQ
标志),那么就返回 EBUSY
错误。
我们看看 时钟中断处理入口
的注册实例:
static struct irqaction irq0 = { timer_interrupt, SA_INTERRUPT, 0, "timer", NULL, NULL};
void __init time_init(void)
{
...
setup_irq(0, &irq0);
}
可以看到,时钟中断处理入口的IRQ号为0,处理函数为 timer_interrupt()
,并且不支持共享IRQ线(flags
字段没有设置 SA_SHIRQ
标志)。
当一个中断发生时,中断控制层会发送信号给CPU,CPU收到信号会中断当前的执行,转而执行中断处理过程。中断处理过程首先会保存寄存器的值到栈中,然后调用 do_IRQ()
函数进行进一步的处理,do_IRQ()
函数代码如下:
asmlinkage unsigned int do_IRQ(struct pt_regs regs)
{
int irq = regs.orig_eax & 0xff; /* 获取IRQ号 */
int cpu = smp_processor_id();
irq_desc_t *desc = irq_desc + irq;
struct irqaction * action;
unsigned int status;
kstat.irqs[cpu][irq]++;
spin_lock(&desc->lock);
desc->handler->ack(irq);
status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
status |= IRQ_PENDING; /* we _want_ to handle it */
action = NULL;
if (!(status & (IRQ_DISABLED | IRQ_INPROGRESS))) { // 当前IRQ不在处理中
action = desc->action; // 获取 action 链表
status &= ~IRQ_PENDING; // 去除IRQ_PENDING标志, 这个标志用于记录是否在处理IRQ请求的时候又发生了中断
status |= IRQ_INPROGRESS; // 设置IRQ_INPROGRESS标志, 表示正在处理IRQ
}
desc->status = status;
if (!action) // 如果上一次IRQ还没完成, 直接退出
goto out;
for (;;) {
spin_unlock(&desc->lock);
handle_IRQ_event(irq, ®s, action); // 处理IRQ请求
spin_lock(&desc->lock);
if (!(desc->status & IRQ_PENDING)) // 如果在处理IRQ请求的时候又发生了中断, 继续处理IRQ请求
break;
desc->status &= ~IRQ_PENDING;
}
desc->status &= ~IRQ_INPROGRESS;
out:
desc->handler->end(irq);
spin_unlock(&desc->lock);
if (softirq_active(cpu) & softirq_mask(cpu))
do_softirq(); // 中断下半部处理
return 1;
}
do_IRQ()
函数首先通过IRQ号获取到其对应的 irq_desc_t
结构,注意的是同一个中断有可能发生多次,所以要判断当前IRQ是否正在被处理当中(判断 irq_desc_t
结构的 status
字段是否设置了 IRQ_INPROGRESS
标志),如果不是处理当前,那么就获取到 action
链表,然后通过调用 handle_IRQ_event()
函数来执行 action 链表中的中断处理函数。
如果在处理中断的过程中又发生了相同的中断(irq_desc_t
结构的 status
字段被设置了 IRQ_INPROGRESS
标志),那么就继续对中断进行处理。处理完中断后,调用 do_softirq()
函数来对中断下半部进行处理(下面会说)。
接下来看看 handle_IRQ_event()
函数的实现:
int handle_IRQ_event(unsigned int irq, struct pt_regs * regs, struct irqaction * action)
{
int status;
int cpu = smp_processor_id();
irq_enter(cpu, irq);
status = 1; /* Force the "do bottom halves" bit */
if (!(action->flags & SA_INTERRUPT)) // 如果中断处理能够在打开中断的情况下执行, 那么就打开中断
__sti();
do {
status |= action->flags;
action->handler(irq, action->dev_id, regs);
action = action->next;
} while (action);
if (status & SA_SAMPLE_RANDOM)
add_interrupt_randomness(irq);
__cli();
irq_exit(cpu, irq);
return status;
}
handle_IRQ_event()
函数非常简单,就是遍历 action 链表并且执行其中的处理函数,比如对于 时钟中断
就是调用 timer_interrupt()
函数。这里要注意的是,如果中断处理过程能够开启中断的,那么就把中断打开(因为CPU接收到中断信号时会关闭中断)。
由于中断处理一般在关闭中断的情况下执行,所以中断处理不能太耗时,否则后续发生的中断就不能实时地被处理。鉴于这个原因,Linux把中断处理分为两个部分,上半部
和 下半部
,上半部
在前面已经介绍过,接下来就介绍一下 下半部
的执行。
一般中断 上半部
只会做一些最基础的操作(比如从网卡中复制数据到缓存中),然后对要执行的中断 下半部
进行标识,标识完调用 do_softirq()
函数进行处理。
中断下半部
由 softirq(软中断)
机制来实现的,在Linux内核中,有一个名为 softirq_vec
的数组,如下:
static struct softirq_action softirq_vec[32];
其类型为 softirq_action
结构,定义如下:
struct softirq_action
{
void (*action)(struct softirq_action *);
void *data;
};
softirq_vec
数组是 softirq
机制的核心,softirq_vec
数组每个元素代表一种软中断。但在Linux中只定义了四种软中断,如下:
enum
{
HI_SOFTIRQ=0,
NET_TX_SOFTIRQ,
NET_RX_SOFTIRQ,
TASKLET_SOFTIRQ
};
HI_SOFTIRQ
是高优先级tasklet,而 TASKLET_SOFTIRQ
是普通tasklet,tasklet是基于softirq机制的一种任务队列(下面会介绍)。NET_TX_SOFTIRQ
和 NET_RX_SOFTIRQ
特定用于网络子模块的软中断(不作介绍)。
要注册一个softirq处理函数,可以通过 open_softirq()
函数来进行,代码如下:
void open_softirq(int nr, void (*action)(struct softirq_action*), void *data)
{
unsigned long flags;
int i;
spin_lock_irqsave(&softirq_mask_lock, flags);
softirq_vec[nr].data = data;
softirq_vec[nr].action = action;
for (i=0; i<NR_CPUS; i++)
softirq_mask(i) |= (1<<nr);
spin_unlock_irqrestore(&softirq_mask_lock, flags);
}
open_softirq()
函数的主要工作就是向 softirq_vec
数组添加一个softirq处理函数。
Linux在系统初始化时注册了两种softirq处理函数,分别为 TASKLET_SOFTIRQ
和 HI_SOFTIRQ
:
void __init softirq_init()
{
...
open_softirq(TASKLET_SOFTIRQ, tasklet_action, NULL);
open_softirq(HI_SOFTIRQ, tasklet_hi_action, NULL);
}
处理softirq是通过 do_softirq()
函数实现,代码如下:
asmlinkage void do_softirq()
{
int cpu = smp_processor_id();
__u32 active, mask;
if (in_interrupt())
return;
local_bh_disable();
local_irq_disable();
mask = softirq_mask(cpu);
active = softirq_active(cpu) & mask;
if (active) {
struct softirq_action *h;
restart:
softirq_active(cpu) &= ~active;
local_irq_enable();
h = softirq_vec;
mask &= ~active;
do {
if (active & 1)
h->action(h);
h++;
active >>= 1;
} while (active);
local_irq_disable();
active = softirq_active(cpu);
if ((active &= mask) != 0)
goto retry;
}
local_bh_enable();
return;
retry:
goto restart;
}
前面说了 softirq_vec
数组有32个元素,每个元素对应一种类型的softirq,那么Linux怎么知道哪种softirq需要被执行呢?在Linux中,每个CPU都有一个类型为 irq_cpustat_t
结构的变量,irq_cpustat_t
结构定义如下:
typedef struct {
unsigned int __softirq_active;
unsigned int __softirq_mask;
...
} irq_cpustat_t;
其中 __softirq_active
字段表示有哪种softirq触发了(int类型有32个位,每一个位代表一种softirq),而 __softirq_mask
字段表示哪种softirq被屏蔽了。Linux通过 __softirq_active
这个字段得知哪种softirq需要执行(只需要把对应位设置为1)。
所以,do_softirq()
函数首先通过 softirq_mask(cpu)
来获取当前CPU对应被屏蔽的softirq,而 softirq_active(cpu) & mask
就是获取需要执行的softirq,然后就通过对比 __softirq_active
字段的各个位来判断是否要执行该类型的softirq。
前面说了,tasklet机制是基于softirq机制的,tasklet机制其实就是一个任务队列,然后通过softirq执行。在Linux内核中有两种tasklet,一种是高优先级tasklet,一种是普通tasklet。这两种tasklet的实现基本一致,唯一不同的就是执行的优先级,高优先级tasklet会先于普通tasklet执行。
tasklet本质是一个队列,通过结构体 tasklet_head
存储,并且每个CPU有一个这样的队列,我们来看看结构体 tasklet_head
的定义:
struct tasklet_head
{
struct tasklet_struct *list;
};
struct tasklet_struct
{
struct tasklet_struct *next;
unsigned long state;
atomic_t count;
void (*func)(unsigned long);
unsigned long data;
};
从 tasklet_head
的定义可以知道,tasklet_head
结构是 tasklet_struct
结构队列的头部,而 tasklet_struct
结构的 func
字段正式任务要执行的函数指针。Linux定义了两种的tasklet队列,分别为 tasklet_vec
和 tasklet_hi_vec
,定义如下:
struct tasklet_head tasklet_vec[NR_CPUS];
struct tasklet_head tasklet_hi_vec[NR_CPUS];
可以看出,tasklet_vec
和 tasklet_hi_vec
都是数组,数组的元素个数为CPU的核心数,也就是每个CPU核心都有一个高优先级tasklet队列和一个普通tasklet队列。
如果我们有一个tasklet需要执行,那么高优先级tasklet可以通过 tasklet_hi_schedule()
函数调度,而普通tasklet可以通过 tasklet_schedule()
调度。这两个函数基本一样,所以我们只分析其中一个:
static inline void tasklet_hi_schedule(struct tasklet_struct *t)
{
if (!test_and_set_bit(TASKLET_STATE_SCHED, &t->state)) {
int cpu = smp_processor_id();
unsigned long flags;
local_irq_save(flags);
t->next = tasklet_hi_vec[cpu].list;
tasklet_hi_vec[cpu].list = t;
__cpu_raise_softirq(cpu, HI_SOFTIRQ);
local_irq_restore(flags);
}
}
函数参数的类型是 tasklet_struct
结构的指针,表示需要执行的tasklet结构。tasklet_hi_schedule()
函数首先判断这个tasklet是否已经被添加到队列中,如果不是就添加到 tasklet_hi_vec
队列中,并且通过调用 __cpu_raise_softirq(cpu, HI_SOFTIRQ)
来告诉softirq需要执行 HI_SOFTIRQ
类型的softirq,我们来看看 __cpu_raise_softirq()
函数的实现:
static inline void __cpu_raise_softirq(int cpu, int nr)
{
softirq_active(cpu) |= (1<<nr);
}
可以看出,__cpu_raise_softirq()
函数就是把 irq_cpustat_t
结构的 __softirq_active
字段的 nr位
设置为1。对于 tasklet_hi_schedule()
函数就是把 HI_SOFTIRQ
位(0位)设置为1。
前面我们也介绍过,Linux在初始化时会注册两种softirq,TASKLET_SOFTIRQ
和 HI_SOFTIRQ
:
void __init softirq_init()
{
...
open_softirq(TASKLET_SOFTIRQ, tasklet_action, NULL);
open_softirq(HI_SOFTIRQ, tasklet_hi_action, NULL);
}
所以当把 irq_cpustat_t
结构的 __softirq_active
字段的 HI_SOFTIRQ
位(0位)设置为1时,softirq机制就会执行 tasklet_hi_action()
函数,我们来看看 tasklet_hi_action()
函数的实现:
static void tasklet_hi_action(struct softirq_action *a)
{
int cpu = smp_processor_id();
struct tasklet_struct *list;
local_irq_disable();
list = tasklet_hi_vec[cpu].list;
tasklet_hi_vec[cpu].list = NULL;
local_irq_enable();
while (list != NULL) {
struct tasklet_struct *t = list;
list = list->next;
if (tasklet_trylock(t)) {
if (atomic_read(&t->count) == 0) {
clear_bit(TASKLET_STATE_SCHED, &t->state);
t->func(t->data); // 调用tasklet处理函数
tasklet_unlock(t);
continue;
}
tasklet_unlock(t);
}
...
}
}
tasklet_hi_action()
函数非常简单,就是遍历 tasklet_hi_vec
队列并且执行其中tasklet的处理函数。