forked from Trustworthy-AI-Group/TransferAttack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrap.py
147 lines (117 loc) · 5.68 KB
/
trap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch
import torchvision.transforms as transforms
import torch.nn as nn
from ..utils import *
from ..gradient.mifgsm import MIFGSM
class Mid_layer_target_Loss(nn.Module):
def __init__(self):
super(Mid_layer_target_Loss, self).__init__()
def forward(self, h_star, h_adv, h_x, coeff):
x = (h_star - h_x).view(1, -1)
y = (h_adv - h_x).view(1, -1)
x_norm = x / x.norm()
if (y == 0).all():
y_norm = y
else:
y_norm = y / y.norm()
angle_loss = torch.mm(x_norm, y_norm.transpose(0, 1))
magnitude_gain = y.norm() / x.norm()
return angle_loss + magnitude_gain * coeff
class TRAP(MIFGSM):
"""
Transferable and Robust Adversarial Perturbation Generation (TRAP)
'Exploring Transferable and Robust Adversarial Perturbation Generation from the Perspective of Network Hierarchy'(https://arxiv.org/pdf/2108.07033v1)
Arguments:
model_name (str): the name of surrogate model for attack.
epsilon (float): the perturbation budget.
alpha (float): the step size.
beta (float): the balance coefficient.
epoch (int): the number of iterations.
baseline_epoch (int): the number of iterations for baseline attack phase.
probb (float): the execution probability of applying affine-transformation.
coeff (float): the tradeoff parameter.
feature_layer (str): the targeted layer for the hidden output.
decay (float): the decay factor for momentum calculation.
targeted (bool): targeted/untargeted attack.
random_start (bool): whether using random initialization for delta.
norm (str): the norm of perturbation, l2/linfty.
loss (str): the loss function.
device (torch.device): the device for data. If it is None, the device would be same as model
Official arguments:
epsilon=16/255, alpha=epsilon/epoch=1.6/255, beta=0.8, epoch=300, baseline_epoch=150, feature_layer='layer3', probb=0.9, coeff=0.8 decay=1.
Example script:
python main.py --input_dir ./path/to/data --output_dir adv_data/trap/resnet18 --attack trap --model=resnet18
python main.py --input_dir ./path/to/data --output_dir adv_data/trap/resnet18 --eval
"""
def __init__(self, model_name, epsilon=16/255, alpha=1.6/255, beta=0.8, epoch=300, baseline_epoch=150, decay=1., targeted=False, probb=0.9,
random_start=False, norm='linfty', loss='crossentropy', device=None, attack='TRAP', feature_layer='layer3', coeff=0.8, **kwargs):
super().__init__(model_name, epsilon, epsilon/baseline_epoch, baseline_epoch, decay, targeted, random_start, norm, loss, device, attack)
self.beta = beta
self.enhance_epoch = epoch - baseline_epoch
self.feature_layer = self.find_layer(feature_layer)
self.coeff = coeff
self.affine_trans = transforms.RandomAffine(degrees=90, translate=(0.1,0.1), scale=(0.5,1.5), shear=(-30,30,-30,30),interpolation=transforms.InterpolationMode.BILINEAR)
self.trap_loss = Mid_layer_target_Loss()
self.probb = probb
def find_layer(self,layer_name):
parser = layer_name.split(' ')
m = self.model[1]
for layer in parser:
if layer not in m._modules.keys():
print("Selected layer is not in Model")
exit()
else:
m = m._modules.get(layer)
return m
def __forward_hook(self,m,i,o):
global mid_output
mid_output = o
def get_trap_loss(self, h_star, h_adv, h_x):
loss = self.trap_loss(h_star, h_adv, h_x, self.coeff)
return -loss if self.targeted else loss
def transform(self, data, **kwargs):
if torch.rand(1) > self.probb:
return data
return self.affine_trans(data)
def forward(self, data, label, **kwargs):
"""
The general attack procedure
Arguments:
data (N, C, H, W): tensor for input images
labels (N,): tensor for ground-truth labels if untargetd, otherwise targeted labels
"""
# Perform t1 baseline attack (AIM)
init_delta = super().forward(data, label, **kwargs)
if self.targeted:
assert len(label) == 2
label = label[1] # the second element is the targeted label tensor
data = data.clone().detach().to(self.device)
label = label.clone().detach().to(self.device)
delta = self.init_delta(data)
h = self.feature_layer.register_forward_hook(self.__forward_hook)
# Initialize h_x and obtain its hidden outputs
logits = self.get_logits(data)
h_x = mid_output
# Initialize h_star and obtain its hidden outputs
logits = self.get_logits(data+init_delta)
h_star = mid_output
# Update step size alpha
self.alpha = self.epsilon / self.enhance_epoch
momentum = 0
for _ in range(self.enhance_epoch):
# Obtain the output
logits = self.get_logits(self.transform(data+delta))
# Obtain the hidden output of x_adv
h_adv = mid_output
# Calculate the loss
loss = self.get_trap_loss(h_star, h_adv, h_x)
# Calculate the gradients
grad = self.get_grad(loss, delta)
# Calculate the momentum
momentum = self.get_momentum(grad, momentum)
# Update adversarial perturbation
delta = self.update_delta(delta, data, momentum, self.alpha)
# Update h_star
h_star = (1 - self.beta) * h_adv + self.beta * h_star
h.remove()
return delta.detach()