forked from Trustworthy-AI-Group/TransferAttack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcdtp.py
170 lines (139 loc) · 5.27 KB
/
cdtp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import torch
import torch.nn.functional as F
from ..utils import *
from ..gradient.mifgsm import MIFGSM
from torch import Tensor
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import torch
import torchvision
import pandas as pd
###########################
# Generator: Resnet
###########################
# To control feature map in generator
ngf = 64
class GeneratorResnet(nn.Module):
def __init__(self, inception=False, data_dim='high'):
'''
:param inception: if True crop layer will be added to go from 3x300x300 t0 3x299x299.
:param data_dim: for high dimentional dataset (imagenet) 6 resblocks will be add otherwise only 2.
'''
super(GeneratorResnet, self).__init__()
self.inception = inception
self.data_dim = data_dim
# Input_size = 3, n, n
self.block1 = nn.Sequential(
nn.ReflectionPad2d(3),
nn.Conv2d(3, ngf, kernel_size=7, padding=0, bias=False),
nn.BatchNorm2d(ngf),
nn.ReLU(True)
)
# Input size = 3, n, n
self.block2 = nn.Sequential(
nn.Conv2d(ngf, ngf * 2, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(ngf * 2),
nn.ReLU(True)
)
# Input size = 3, n/2, n/2
self.block3 = nn.Sequential(
nn.Conv2d(ngf * 2, ngf * 4, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(ngf * 4),
nn.ReLU(True)
)
# Input size = 3, n/4, n/4
# Residual Blocks: 6
self.resblock1 = ResidualBlock(ngf * 4)
self.resblock2 = ResidualBlock(ngf * 4)
if self.data_dim == 'high':
self.resblock3 = ResidualBlock(ngf * 4)
self.resblock4 = ResidualBlock(ngf * 4)
self.resblock5 = ResidualBlock(ngf * 4)
self.resblock6 = ResidualBlock(ngf * 4)
# self.resblock7 = ResidualBlock(ngf*4)
# self.resblock8 = ResidualBlock(ngf*4)
# self.resblock9 = ResidualBlock(ngf*4)
# Input size = 3, n/4, n/4
self.upsampl1 = nn.Sequential(
nn.ConvTranspose2d(ngf * 4, ngf * 2, kernel_size=3, stride=2, padding=1, output_padding=1, bias=False),
nn.BatchNorm2d(ngf * 2),
nn.ReLU(True)
)
# Input size = 3, n/2, n/2
self.upsampl2 = nn.Sequential(
nn.ConvTranspose2d(ngf * 2, ngf, kernel_size=3, stride=2, padding=1, output_padding=1, bias=False),
nn.BatchNorm2d(ngf),
nn.ReLU(True)
)
# Input size = 3, n, n
self.blockf = nn.Sequential(
nn.ReflectionPad2d(3),
nn.Conv2d(ngf, 3, kernel_size=7, padding=0)
)
self.crop = nn.ConstantPad2d((0, -1, -1, 0), 0)
def forward(self, input):
x = self.block1(input)
x = self.block2(x)
x = self.block3(x)
x = self.resblock1(x)
x = self.resblock2(x)
if self.data_dim == 'high':
x = self.resblock3(x)
x = self.resblock4(x)
x = self.resblock5(x)
x = self.resblock6(x)
# x = self.resblock7(x)
# x = self.resblock8(x)
# x = self.resblock9(x)
x = self.upsampl1(x)
x = self.upsampl2(x)
x = self.blockf(x)
if self.inception:
x = self.crop(x)
return (torch.tanh(x) + 1) / 2 # Output range [0 1]
class ResidualBlock(nn.Module):
def __init__(self, num_filters):
super(ResidualBlock, self).__init__()
self.block = nn.Sequential(
nn.ReflectionPad2d(1),
nn.Conv2d(in_channels=num_filters, out_channels=num_filters, kernel_size=3, stride=1, padding=0,
bias=False),
nn.BatchNorm2d(num_filters),
nn.ReLU(True),
nn.Dropout(0.5),
nn.ReflectionPad2d(1),
nn.Conv2d(in_channels=num_filters, out_channels=num_filters, kernel_size=3, stride=1, padding=0,
bias=False),
nn.BatchNorm2d(num_filters)
)
def forward(self, x):
residual = self.block(x)
return x + residual
class CDTP(MIFGSM):
"""
Cross-Domain Transferability of Adversarial Perturbation (CDTP) Attack (https://arxiv.org/abs/1905.11736)
Arguments:
model (str): the surrogate model name for attack.
"""
def __init__(self, model_name='inc_v3', *args, **kwargs):
super().__init__(model_name, *args, **kwargs)
self.netG = self.load_Gmodel()
def load_Gmodel(self):
netG = GeneratorResnet()
try:
netG.load_state_dict(torch.load('/netG.pth'))
except:
print('No pre-trained generator model found, please visit https://github.com/Muzammal-Naseer/CDA to download model')
netG.to(self.device)
netG.eval()
return netG
def forward(self, data: Tensor, label: Tensor, **kwargs):
data = data.clone().detach().to(self.device)
label = label.clone().detach().to(self.device)
with torch.no_grad():
adv_imgs = self.netG(data).detach()
perturbations = adv_imgs - data
perturbations = torch.clamp(perturbations, -self.epsilon, self.epsilon)
return perturbations