-
Notifications
You must be signed in to change notification settings - Fork 111
/
Copy pathmanhattan_v2_bumblebee.R
executable file
·203 lines (172 loc) · 6.81 KB
/
manhattan_v2_bumblebee.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#Generic Manhattan plot function for PLINK-formatted data (chr X,Y,XY and MT are represented as 23,24,25,26)
#Wrapper function written by Mike Weale and Richard Gunning. Internal "wgplot" function written by Matt Settles.
#Version 2 (12 Mar 2013)
#Arguments:
#x Data frame to be plotted. x$CHR contains chromosome (numeric). x$BP contains SNP position (numeric). x$P contains association p-value (numeric)
#GWthresh Numeric. Indicates where "genomewide significance" threshold should be drawn
#GreyZoneThresh Numeric. Indicates a sub-genomewide-sig "grey zone" where SNPs are shown with a larger point size
#DrawGWline Boolean. If TRUE, then a red line at the "genomewide significance" threshold is plotted
#cutoff Numeric. Any p-vlaues less than cutoff are forced equal to cutoff
#Example:
#source("manhattan_v2.R")
#d = read.table("myplinkresults.logistic", header=TRUE, as.is=TRUE)
#X=data.frame(CHR=d$CHR, BP=d$BP, P=d$P)
#manhattan( X, DrawGWline=FALSE )
manhattan <- function( x, GWthresh=-log10(5e-8), GreyZoneThresh=-log10(1e-4), DrawGWline=TRUE, cutoff=0 )
{
x$P[ x$P<cutoff ] = cutoff
#Create x2 data frame for use with wgplot
x2=data.frame(CHR=as.character(x$CHR), BP=x$BP, P=x$P, stringsAsFactors=FALSE)
x2$CHR[x2$CHR=="23"]="X"
x2$CHR[x2$CHR=="24"]="Y"
x2$CHR[x2$CHR=="25"]="XY"
x2$CHR[x2$CHR=="26"]="MT"
labels <- as.character(sort(as.numeric(unique(x2$CHR))))
bumblebee<-c("orange",rep.int(c("orange","black"),12))
wgplot(x2, pch=".", color=bumblebee, cutoffs=4:round(-log10(min(x2$P)),0), labels=labels )
for (i in 4:20) abline(h=i, col="grey", lty="dotted")
#Get my own global SNP pos info
chr <- x$CHR
pos <- x$BP
p <- x$P
ord <- order(as.numeric(chr),as.numeric(pos))
chr <- chr[ord]
pos <- pos[ord]
p <- p[ord]
lens.chr <- as.vector(table(as.numeric(chr)))
CM <- cumsum(lens.chr)
n.chr <- length(lens.chr)
color=bumblebee
color <- rep(color,ceiling(n.chr/length(color)))
p <- -log(p,10)
#make positions cumulatve
if ( any(diff(pos) < 0) ) {
cpos <- cumsum(c(0,pos[which(!duplicated(chr))-1]))
pos <- pos + rep(cpos,lens.chr)
mids <- cpos + diff(c(cpos,max(pos)))/2
}
#plot overlay points
for (i in 1:n.chr) {
u <- CM[i]
l <- CM[i] - lens.chr[i] + 1
cat("Overlay Plotting points ", l, "-", u, "\n")
postmp <- pos[l:u]
ptmp <- p[l:u]
points(postmp[(ptmp>GreyZoneThresh)&(ptmp<GWthresh)], ptmp[(ptmp>GreyZoneThresh)&(ptmp<GWthresh)],cex=0.5, pch="x", col=color[i])
points(postmp[ptmp>GWthresh], ptmp[ptmp>GWthresh], pch=20, col=color[i])
}
#drawthreshold
if (DrawGWline) {
abline(h=(GWthresh), col="red")
}
}
#From http://bioinfo-mite.crb.wsu.edu/Rcode/wgplot.R
#See also https://stat.ethz.ch/pipermail/r-help/2008-November/180812.html
###############################################################################
###
### Whole Genome Significance plot
### Matt Settles
### Bioinformatics Core
### Washington State University, Pullman, WA
###
### Created July 7, 2008
###
### July 8, 2008 - fixed color goof
###############################################################################
##############
### things to add
### marker name on plot for significant markers
##############
### THERE ARE ERRORS IN GAPS MHTPLOT, SO THIS IS A FIX
## data a data frame with three columns representing chromosome, position and p values logged or unlogged
## logscale a flag to indicate if p value are to be log-transformed, FALSE means already logtransformed
## base the base of the logarithm, when logscale =TRUE
## cutoffs the cutt-offs where horizontal line(s) are drawn
## color the color for different chromosome(s), and random if unspecified
## labels labels for the x-axis, length = number of chromosomes
## xlabel label to be placed on the X axis
## ylabel lable to be placed on the Y axis
## ... other options in compatible with the R plot function
## USAGE
# source("http://bioinfo-mite.crb.wsu.edu/Rcode/wgplot.R")
## fake example with Affy500k data
# affy <-c(40220, 41400, 33801, 32334, 32056, 31470, 25835, 27457, 22864, 28501, 26273,
# 24954, 19188, 15721, 14356, 15309, 11281, 14881, 6399, 12400, 7125, 6207)
# CM <- cumsum(affy)
# n.markers <- sum(affy)
# n.chr <- length(affy)
# test <- data.frame(chr=rep(1:n.chr,affy),pos=1:n.markers,p=runif(n.markers))
# png("wgplot.png",units="in",width=8,height=5,res=300)
# par(las="2",cex=0.6,pch=21,bg="white")
# wgplot(test,cutoffs = c(1,3, 5, 7, 9),color=palette()[2:5],labels=as.character(1:22))
# title("Whole Genome Associaton Plot of Significance for Chromosomes 1 to 22")
# dev.off()
##
"wgplot" <-
function (data,
logscale = TRUE,
base = 10,
cutoffs = c(3, 5, 7, 9),
siglines = NULL,
sigcolors = "red",
color = sample(colors(), 26),
chrom = as.character(c(1:22,"X","Y","XY","MT")),
startbp = NULL,
endbp = NULL,
labels = as.character(c(1:22,"X","Y","XY","MT")),
xlabel = "Chromosome",
ylabel = expression(log[10]*" p-value"), ...)
{
if (any(is.na(data)))
data <- data[-unique(which(is.na(data))%%nrow(data)),]
keep <- which(data[,1] %in% chrom)
data <- data[keep,]
if (!is.null(startbp) & !is.null(endbp) & length(chrom) == 1){
keep <- which(data[,2] >= startbp & data[,2] <= endbp)
data <- data[keep,]
}
chr <- data[, 1]
pos <- data[, 2]
p <- data[, 3]
### remove any NAs
which(is.na(data[,2]))
chr <- replace(chr,which(chr == "X"),"100")
chr <- replace(chr,which(chr == "Y"),"101")
chr <- replace(chr,which(chr == "XY"),"102")
chr <- replace(chr,which(chr == "MT"),"103")
ord <- order(as.numeric(chr),as.numeric(pos))
chr <- chr[ord]
pos <- pos[ord]
p <- p[ord]
lens.chr <- as.vector(table(as.numeric(chr)))
CM <- cumsum(lens.chr)
n.markers <- sum(lens.chr)
n.chr <- length(lens.chr)
id <- 1:n.chr
color <- rep(color,ceiling(n.chr/length(color)))
if (logscale)
p <- -log(p,base)
if ( any(diff(pos) < 0) ) {
cpos <- cumsum(c(0,pos[which(!duplicated(chr))-1]))
pos <- pos + rep(cpos,lens.chr)
mids <- cpos + diff(c(cpos,max(pos)))/2
}
par(xaxt = "n", yaxt = "n")
plot(c(pos,pos[1]), c(9,p), type = "n", xlab = xlabel, ylab = ylabel, axes = FALSE, ...)
for (i in 1:n.chr) {
u <- CM[i]
l <- CM[i] - lens.chr[i] + 1
cat("Plotting points ", l, "-", u, "\n")
points(pos[l:u], p[l:u], col = color[i], ...)
}
par(xaxt = "s", yaxt = "s")
axis(1, at = c(0, pos[round(CM)],max(pos)),FALSE)
text(mids, par("usr")[3] - 0.5, srt = 0, pos=2,cex=0.5,offset= -0.2,
labels = labels[1:n.chr], xpd = TRUE)
#axis(side=1, at = pos[round(CM-lens.chr/2)],tick=FALSE, labels= labels[1:n.chr])
#abline(h = cutoffs)
axis(side=2, at = cutoffs )
if (!is.null(siglines))
abline(h = -log(siglines,base),col=sigcolors)
#mtext(eval(expression(cutoffs)), 2, at = cutoffs)
}