This repository has been archived by the owner on Dec 15, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathGiggleLiu-TropicalTensors.jl
649 lines (565 loc) · 19.9 KB
/
GiggleLiu-TropicalTensors.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
### A Pluto.jl notebook ###
# v0.14.0
using Markdown
using InteractiveUtils
# This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error).
macro bind(def, element)
quote
local el = $(esc(element))
global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : missing
el
end
end
# ╔═╡ c456b902-7959-11eb-03ba-dd14a2cd5758
begin
using Revise, PlutoUI, CoordinateTransformations, StaticArrays, Rotations, Viznet, Compose
# left right layout
function leftright(a, b; width=600)
HTML("""
<style>
table.nohover tr:hover td {
background-color: white !important;
}</style>
<table width=$(width)px class="nohover" style="border:none">
<tr>
<td>$(html(a))</td>
<td>$(html(b))</td>
</tr></table>
""")
end
# up down layout
function updown(a, b; width=nothing)
HTML("""<table class="nohover" style="border:none" $(width === nothing ? "" : "width=$(width)px")>
<tr>
<td>$(html(a))</td>
</tr>
<tr>
<td>$(html(b))</td>
</tr></table>
""")
end
function highlight(str)
HTML("""<span style="background-color:yellow">$(str)</span>""")
end
end;
# ╔═╡ 5bb40ad6-7b33-11eb-0b31-63d5e47fa0e7
using TropicalNumbers, # tropical number type
TropicalGEMM, # fast tropical matrix multiplication
LightGraphs, # graph operations
SimpleTensorNetworks, # tensor network contraction
Random
# ╔═╡ 121b4926-7aba-11eb-30e1-7b8edd4f0166
html"""<h1>Tropical tensor networks for solving spin glasses</h1>
<p><big>Jinguo Liu</big></p>
"""
# ╔═╡ 92065f9d-422e-455f-bff2-f442ccd6043a
md"""
1. What is a tropical tensor network,
2. How to use a tropical tensor network to find the spin glass ground state,
3. How to use a tropical tensor network to count the spin glass ground state degeneracy,
"""
# ╔═╡ 9273e259-a25a-46a4-b0f8-62f37f62c263
html"""<button onclick="present()">present</button>"""
# ╔═╡ 2c3f2fd6-93ea-4fd7-9664-cffd10db16b4
html"""
<script>
document.body.style.cursor = "pointer";
</script>
"""
# ╔═╡ 7bdf517e-79ff-11eb-38a3-49c02d94d943
md"## The Song Shan Lake Spring School (SSSS) Challenge"
# ╔═╡ 89d737b3-e72e-4d87-9ade-466a84491ac8
md"In 2019, Lei Wang, Pan Zhang, Roger and me released a challenge in the Song Shan Lake Spring School, the one gives the largest number of solutions to the challenge quiz can take a macbook home ([@LinuxDaFaHao](https://github.com/LinuxDaFaHao)). Students submitted many [solutions to the problem](https://github.com/QuantumBFS/SSSS/blob/master/Challenge.md). The second part of the quiz is"
# ╔═╡ a843152e-93e6-11eb-365f-2bd3ff0cf096
md"""
θ = $(@bind θ2 Slider(0.0:0.01:π; default=0.5))
ϕ = $(@bind ϕ2 Slider(0.0:0.01:2π; default=0.3))
"""
# ╔═╡ 88e14ef2-7af1-11eb-23d6-b34b1eff8f87
md"""
In the $(highlight("Buckyball")) structure shown in the figure, we attach an ising spin ``s_i=\pm 1`` on each vertex. The neighboring spins interact with an $(highlight("anti-ferromagnetic")) coupling of unit strength. Count the $(highlight("degeneracy")) of configurations that minimizes the energy
```math
E(\{s_1,s_2,\ldots,s_n\}) = \sum_{i,j \in edges}s_i s_j
```
"""
# ╔═╡ 3221a326-7a17-11eb-0fe6-f75798a411b9
md"""# A tropical tensor network approach
"""
# ╔═╡ e383103e-c956-4884-9c59-3e171b5bc11d
highlight("A tensor network is a generalization of matrix multiplication")
# ╔═╡ 3208fd8a-7a17-11eb-35ce-4d6b141c1aff
md"
```math
Y[i,j] := \sum_k A[i,k] \times B[k,j]
```
"
# ╔═╡ 32116a92-7a17-11eb-228f-0713510d0348
let
Compose.set_default_graphic_size(15cm, 10/3*cm)
sq = nodestyle(:square; r=0.08)
eb = bondstyle(:line)
tb = textstyle(:default, fontsize(20px))
tb2 = textstyle(:default, fontsize(30px), fill("white"))
y0 = 0.15
x = (0.3, y0)
y = (0.7, y0)
img = canvas() do
sq >> x
sq >> y
eb >> (x, y)
eb >> (x, (0.0, y0))
eb >> (x, (1.0, y0))
tb >> ((0.1, y0+0.05), "i")
tb >> ((0.9, y0+0.05), "j")
tb >> ((0.5, y0+0.05), "k")
tb2 >> (x, "A")
tb2 >> (y, "B")
end
Compose.compose(context(0.38, 0.0, 1/1.5^2, 2.0), img)
end
# ╔═╡ 1af9b822-4239-4ac7-bc64-801a3461d9e1
md"""
* matrices → tensors
* two arguments → multiple arguments
```math
Y[n] := \sum_{i,j,k,l,m} A[i,l] \times B[i,j] \times C[j,k,n] \times D[k,l,m] \times E[m]
```
"""
# ╔═╡ 32277c3a-7a17-11eb-3763-af68dbb81465
let
Compose.set_default_graphic_size(14cm, 7cm)
sq = nodestyle(:square; r=0.07)
wb = nodestyle(:square, fill("white"); r=0.04)
eb = bondstyle(:line)
tb = textstyle(:default, fontsize(25px))
tb2 = textstyle(:default, fontsize(30px), fill("white"))
x0 = 0.15
x1 = 0.65
y0 = 0.35
y1 = 0.8
x3 = 0.9
y3 = 0.1
a = (x0, y0)
b = (x0, y1)
c = (x1, y1)
d = (x1, y0)
e = (x3, y3)
img = canvas() do
for (loc, label) in [(a, "A"), (b, "B"), (c, "C"), (d, "D"), (e, "E")]
sq >> loc
tb2 >> (loc, label)
end
for (edge, label) in [((a, b), "i"), ((b, c), "j"), ((c, d), "k"), ((a, d), "l"), ((d,e), "m"), ((c, (0.9, 0.55)), "n")]
eb >> edge
wb >> ((edge[1] .+ edge[2]) ./ 2)
tb >> ((edge[1] .+ edge[2]) ./ 2, label)
end
end
Compose.compose(context(.38, 0, .5, 1), img)
end
# ╔═╡ 2c294933-1425-4e80-84f8-80fe73b2b03a
md"""A tensor network is also a $(highlight("sum-product")) of tensor elements."""
# ╔═╡ a7363a47-83b6-458a-95dc-448f32d4ef4f
highlight("A Tropical tensor network is a tensor network with Tropical numbers as tensor elements.")
# ╔═╡ d0b54b76-7852-11eb-2398-0911380fa090
md"""
```math
\begin{align}
&a ⊕ b = \max(a, b)\\
&a ⊙ b = a + b
\end{align}
```
"""
# ╔═╡ 211911da-7a18-11eb-12d4-65b0dec4b8dc
md"
```math
\begin{align}
\cancel{Y[n] := \sum_{i,j,k,l,m} A[i,l] \times B[i,j] \times C[j,k,n] \times D[k,l,m] \times E[m]}\\
Y[n] := \max_{i,j,k,l,m} (A[i,l] + B[i,j] + C[j,k,n] + D[k,l,m] + E[m])
\end{align}
```
"
# ╔═╡ 31b975b8-690d-41a0-b1a4-dcbf16a23517
md"""
It has the same form as the spinglass ground state problem.
```math
-E_G = \max_{\{s_1,s_2,\ldots,s_n\}}\left(-\sum_{ij \in edges}J_{ij}s_i s_j\right)
```
"""
# ╔═╡ 5f6cfe59-4d59-4ee6-a32c-712e2a67faa5
md"""
## Let's get our hands dirty!
"""
# ╔═╡ 5d956bd2-8472-47dc-909a-7930612e66de
md"## Tropical algebra"
# ╔═╡ 0b15c4a8-c4b3-4dc3-8aba-61222a48fd05
md"x = $(@bind x Slider(-10:0.1:10; default=3.0,show_value=true))"
# ╔═╡ 7a88b8f0-6f22-4992-931b-54e7f50742f0
zero(TropicalF64)
# ╔═╡ d770f232-7864-11eb-0e9a-81528e359d39
Tropical(-Inf) + Tropical(x)
# ╔═╡ 8168345f-67de-46ca-b9c9-a77ca838da74
Tropical(-Inf) * Tropical(x)
# ╔═╡ 8767709c-478d-4fe5-ad6b-a280b9443460
one(TropicalF64)
# ╔═╡ af13e090-7852-11eb-21ae-8b94f25f1a4f
Tropical(0.0) * Tropical(x)
# ╔═╡ f59579f4-7163-415e-a5f3-18531084af45
Tropical(2.0) - Tropical(1.0)
# ╔═╡ 695e405c-786d-11eb-0a6e-bb776d9626ad
md"
# Counting degeneracy
"
# ╔═╡ 01e40898-c1c8-481a-b149-9b1bebb00043
md"""
Tropical algebra with $(highlight("degeneracy counting"))
```math
\begin{align}
(n_1, c_1) \odot (n_2,c_2) &= (n_1 + n_2, c_1\cdot c_2),\\
(n_1, c_1)\oplus (n_2, c_2) &= \begin{cases}
(n_1\oplus n_2, \, c_1 + c_2 ) & \text{if $n_1 = n_2$}, \\
(n_1\oplus n_2,\, c_1 ) & \text{if $n_1>n_2$}, \\
(n_1\oplus n_2,\, c_2 )& \text{if $n_1 < n_2$}.
\end{cases}
\end{align}
```
"""
# ╔═╡ 1bb36c52-a171-4993-ac86-2250e1e87a01
md"It corresponds to the following four processes of concatenating and comparing configrations on graphs (or tensor networks)."
# ╔═╡ 43101224-7ac5-11eb-104c-0323cf1813c5
md"The zero and one elements are defined as"
# ╔═╡ a0b3eec1-2ab5-4166-b27d-1e0968c1f06e
CountingTropical(2.0)
# ╔═╡ 792df1aa-7a23-11eb-2991-196336246c43
zero(CountingTropical{Float64})
# ╔═╡ 8388305c-7a23-11eb-1588-79c3c6ce9db9
one(CountingTropical{Float64})
# ╔═╡ 7b618d71-2b56-42ba-9c3a-5840f4f0d481
md"## Mapping a spin glass to a Tropical tensor network"
# ╔═╡ b52ead96-7a2a-11eb-334f-e5e5ff5867e3
let
B = md"""
```math
T_{e_{i,j}} = \begin{bmatrix}-J_{ij} & J_{ij} \\J_{ij} & -J_{ij}\end{bmatrix}
```
"""
A = md"""
```math
(T_{v_i})_{s_i s_i' s_i''} = \begin{cases}
0, & s_i = s_i' =s_i''\\
-\infty, &otherwise
\end{cases}
```
"""
leftright(updown(html"<p align='center'>vertex tensor</p>", A), updown(html"<p align='center'>edge tensor</p>", B))
end
# ╔═╡ b975680f-0b78-4178-861f-5da6d10327e4
function ising_vertextensor(::Type{T}, n::Int) where T
res = zeros(T, fill(2, n)...)
res[1] = one(T)
res[end] = one(T)
return res
end
# ╔═╡ e0939f0e-d9f5-4ec6-937d-66367fb40fb6
ising_vertextensor(TropicalF64, 3)
# ╔═╡ 624f57db-7f07-4281-a547-d229b9a8413a
function ising_bondtensor(::Type{T}, J) where T
e = T(-J)
e_ = T(J)
[e e_; e_ e]
end
# ╔═╡ 8692573b-ae74-4f24-8bc3-57c7b85a7034
ising_bondtensor(TropicalF64, 1.0)
# ╔═╡ 064c14b0-73db-4bcf-9b64-a0e34c642f97
md"The contraction gives you the negation of ground state energy"
# ╔═╡ 16c2b86c-db2d-4408-a6ae-e698fdd495c7
md"""
```math
\begin{align}
&\max_{\{s_1,s_2\ldots s_n\}} \sum_{i\in vertices}(T_{v})_{s_is_i s_i} + \sum_{ij\in edges}(T_{e_{ij}})_{s_is_j}\\
=&\max_{\{s_1,s_2,\ldots,s_n\}}\left(-\sum_{ij \in edges}J_{ij}s_i s_j\right)
\end{align}
```
"""
# ╔═╡ 35a94847-a048-44fa-944c-33e6c397bf40
md"# Solving the Buckyball chanllenge step by step"
# ╔═╡ 88f59918-a0e0-4be4-be0a-06b86b90ad58
md"## Step 1: Generate the tensor network"
# ╔═╡ 5a5d4de6-7895-11eb-15c6-bda7a4342002
# returns atom locations
function fullerene()
φ = (1+√5)/2
res = NTuple{3,Float64}[]
for (x, y, z) in ((0.0, 1.0, 3φ), (1.0, 2 + φ, 2φ), (φ, 2.0, 2φ + 1.0))
for (α, β, γ) in ((x,y,z), (y,z,x), (z,x,y))
for loc in ((α,β,γ), (α,β,-γ), (α,-β,γ), (α,-β,-γ), (-α,β,γ), (-α,β,-γ), (-α,-β,γ), (-α,-β,-γ))
if loc ∉ res
push!(res, loc)
end
end
end
end
return res
end;
# ╔═╡ 9b1dc21a-7896-11eb-21f6-bfe9b4dc9ccf
let
tb = textstyle(:default)
Compose.set_default_graphic_size(14cm, 8cm)
cam_position = SVector(0.0, 0.0, 0.5)
rot = RotY(θ2)*RotX(ϕ2)
cam_transform = PerspectiveMap() ∘ inv(AffineMap(rot, rot*cam_position))
Nx = Ny = Nz = 4
nb = nodestyle(:circle; r=0.01)
eb = bondstyle(:default; r=0.01)
x(i,j,k) = cam_transform(SVector(i,j,k) .* 0.03).data
fl = fullerene()
fig = canvas() do
for (i,j,k) in fl
nb >> x(i,j,k)
for (i2,j2,k2) in fl
(i2-i)^2+(j2-j)^2+(k2-k)^2 < 5.0 && eb >> (x(i,j,k), x(i2,j2,k2))
end
end
tb >> ((0.4, 0.2), "60 vertices\n90 edges")
nb >> (0.4, -0.1)
tb >> ((0.55, -0.1), "Ising spin (s=±1)")
eb >> ((0.37, -0.05), (0.43, -0.05))
tb >> ((0.54, -0.05), "AFM coupling")
end
img = Compose.compose(context(0.3,0.5, 1.2/1.4, 1.5), fig)
img
end
# ╔═╡ acbdbfa8-97bc-4194-81b9-4a203e7f8919
let
tb = textstyle(:default)
mb = textstyle(:math)
Compose.set_default_graphic_size(14cm, 8cm)
cam_position = SVector(0.0, 0.0, 0.5)
rot = RotY(θ2)*RotX(ϕ2)
cam_transform = PerspectiveMap() ∘ inv(AffineMap(rot, rot*cam_position))
Nx = Ny = Nz = 4
nb1 = nodestyle(:circle; r=0.01)
nb2 = nodestyle(:square; r=0.01)
eb = bondstyle(:default; r=0.01)
x(i,j,k) = cam_transform(SVector(i,j,k) .* 0.03).data
fl = fullerene()
fig = canvas() do
for (i,j,k) in fl
nb1 >> x(i,j,k)
for (i2,j2,k2) in fl
if (i2-i)^2+(j2-j)^2+(k2-k)^2 < 5.0 && (i<=i2 && (i,j,k) != (i2,j2,k2))
eb >> (x(i,j,k), x(i2,j2,k2))
nb2 >> x((i+i2)/2,(j+j2)/2,(k+k2)/2)
end
end
end
nb1 >> (0.4,-0.1)
eb >> ((0.35,-0.1), (0.45, -0.1))
nb2 >> (0.4,0.0)
eb >> ((0.35,-0.0), (0.45, -0.0))
tb >> ((0.54, 0.0), "edge tensor")
tb >> ((0.55, -0.1), "vertex tensor")
end
img = Compose.compose(context(0.3,0.5, 1.2/1.4, 1.5), fig)
img
end
# ╔═╡ b6560404-7b2d-11eb-21d7-a1e55609ebf7
# the positions of fullerene atoms
c60_xy = fullerene();
# ╔═╡ 6f649efc-7b2d-11eb-1e80-53d84ef98c13
# find edges: vertex pairs with square distance smaller than 5.
c60_edges = [(i=>j) for (i,(i2,j2,k2)) in enumerate(c60_xy), (j,(i1,j1,k1)) in enumerate(c60_xy) if i<j && (i2-i1)^2+(j2-j1)^2+(k2-k1)^2 < 5.0];
# ╔═╡ 20125640-79fd-11eb-1715-1d071cc6cf6c
md"The resulting tensor network contains 90 edge tensors and 60 vertex tensors."
# ╔═╡ c26b5bb6-7984-11eb-18fe-2b6a524f5c85
function c60_tnet(::Type{T}) where T
vertex_arrays = [ising_vertextensor(T, 3) for j=1:length(c60_xy)]
edge_arrays = [ising_bondtensor(T, 1.0) for i = 1:length(c60_edges)]
TensorNetwork([
# vertex tensors
[LabeledTensor(vertex_arrays[i], [(j, v==e[1]) for (j, e) in enumerate(c60_edges) if v ∈ e]) for (i, v) in enumerate(1:60)]...,
# bond tensors
[LabeledTensor(edge_arrays[j], [(j, true), (j, false)]) for j=1:length(c60_edges)]...
])
end;
# ╔═╡ 07a6ac8b-1663-4f07-9434-8915f7f529e1
c60_tnet(TropicalF64) |> length
# ╔═╡ 698a6dd0-7a0e-11eb-2766-1f0baa1317d2
md"## Step 2: Find a proper contraction order by greedy search"
# ╔═╡ 020cfb20-8228-11eb-2ee9-6de0fc7700b1
md"Seed for greedy search = $(@bind seed Slider(1:10000; show_value=true, default=42))"
# ╔═╡ ae92d828-7984-11eb-31c8-8b3f9a071c24
tcs, scs, c60_trees = (Random.seed!(seed); trees_greedy(c60_tnet(TropicalF64); strategy="min_reduce"));
# ╔═╡ 12740186-7b2f-11eb-35e4-01e6f9ffbb4d
c60_contraction_masks = let
function contraction_mask(tnet, tree)
contraction_mask!(tnet, tree, [zeros(Bool, length(tnet))])
end
function contraction_mask!(tnet, tree, results)
if tree isa Integer
res = copy(results[end])
@assert res[tree] == false
res[tree] = true
push!(results, res)
else
contraction_mask!(tnet, tree.left, results)
contraction_mask!(tnet, tree.right, results)
end
return results
end
contraction_mask(c60_tnet(TropicalF64), c60_trees[])
end;
# ╔═╡ 58e38656-7b2e-11eb-3c70-25a919f9926a
md"contraction step = $(@bind nstep_c60 Slider(0:length(c60_tnet(TropicalF64)); show_value=true, default=60))"
# ╔═╡ 2b899624-798c-11eb-20c4-fd5523f7abff
md"The resulting contraction order produces time complexity = 2^ $(round(log2sumexp2(tcs); sigdigits=4)), space complexity = 2^ $(round(maximum(scs); sigdigits=4))"
# ╔═╡ c1c74e70-7b2c-11eb-2f26-21f54ad00fb2
let
θ2 = 0.5
ϕ2 = 0.8
mask = c60_contraction_masks[nstep_c60+1]
Compose.set_default_graphic_size(12cm, 12cm)
cam_position = SVector(0.0, 0.0, 0.5)
rot = RotY(θ2)*RotX(ϕ2)
cam_transform = PerspectiveMap() ∘ inv(AffineMap(rot, rot*cam_position))
Nx = Ny = Nz = 4
tb = textstyle(:default)
nb1 = nodestyle(:circle, fill("red"); r=0.01)
nb2 = nodestyle(:circle, fill("white"), stroke("black"); r=0.01)
eb = bondstyle(:default; r=0.01)
x(i,j,k) = cam_transform(SVector(i,j,k) .* 0.03).data
fig = canvas() do
for (s, (i,j,k)) in enumerate(c60_xy)
(mask[s] ? nb1 : nb2) >> x(i,j,k)
end
for (i, j) in c60_edges
eb >> (x(c60_xy[i]...), x(c60_xy[j]...))
end
nb1 >> (-0.1, 0.45)
tb >> ((-0.0, 0.45), "contracted")
nb2 >> (-0.1, 0.50)
tb >> ((-0.0, 0.50), "remaining")
end
Compose.compose(context(0.5,0.35, 1.0, 1.0), fig)
end
# ╔═╡ aed5727a-744f-4b41-96a8-1c193bd42d68
md"## Step 3: Do the contraction!"
# ╔═╡ 1332bc4c-8dfd-4022-8a40-413a85898b2a
md"For the negated ground state energy only"
# ╔═╡ 8522456a-823c-11eb-3cc1-fb720f1cc470
SimpleTensorNetworks.contract(c60_tnet(TropicalF64), c60_trees[]).array[]
# ╔═╡ 0eb9b484-8270-40ed-ad5c-df342467e51a
md"For the ground state energy degeneracy"
# ╔═╡ c18b54d5-3dc3-4977-841b-5a73215306d6
SimpleTensorNetworks.contract(c60_tnet(CountingTropicalF64), c60_trees[]).array[]
# ╔═╡ 1c4b19d2-7b30-11eb-007b-ab03052b22d2
md"If you see a 16000 in the counting field, congratuations!"
# ╔═╡ e302bd1c-7ab5-11eb-03f6-69dcbb817354
md"## Resources
* Papers and notebooks
* [Phys. Rev. Lett. 126, 090506 (2021)](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.090506), Jin-Guo Liu, Lei Wang, and Pan Zhang
* [notebook](https://giggleliu.github.io/notebooks/tropical/tropicaltensornetwork.html)
* Learn Tensor networks
* [Tensor network website](https://tensornetwork.org/)
* How to find a good tensor contraction order?
* [Contracting Arbitrary Tensor Networks: General Approximate Algorithm and Applications in Graphical Models and Quantum Circuit Simulations](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.060503)
* Learn more about spin glasses and other hard problems
"
# ╔═╡ 442bcb3c-7940-11eb-18e5-d3158b74b1dc
html"""
<table style="border:none">
<tr>
<td rowspan=4>
<img src="https://images-na.ssl-images-amazon.com/images/I/51QttTd6JLL._SX351_BO1,204,203,200_.jpg" width=200px/>
</td>
<td rowspan=1 align="center">
<big>The Nature of Computation</big><br><br>
By <strong>Cristopher Moore</strong>
</td>
</tr>
<tr>
<td align="center">
<strong>Section 5</strong>
<br><br>Who is the hardest one of All?
<br>NP-Completeness
</td>
</tr>
<tr>
<td align="center">
<strong>Section 13</strong>
<br><br>Counting, sampling and statistical physics
</td>
</tr>
</table>
"""
# ╔═╡ Cell order:
# ╠═c456b902-7959-11eb-03ba-dd14a2cd5758
# ╟─121b4926-7aba-11eb-30e1-7b8edd4f0166
# ╟─92065f9d-422e-455f-bff2-f442ccd6043a
# ╟─9273e259-a25a-46a4-b0f8-62f37f62c263
# ╟─2c3f2fd6-93ea-4fd7-9664-cffd10db16b4
# ╟─7bdf517e-79ff-11eb-38a3-49c02d94d943
# ╟─89d737b3-e72e-4d87-9ade-466a84491ac8
# ╟─9b1dc21a-7896-11eb-21f6-bfe9b4dc9ccf
# ╟─a843152e-93e6-11eb-365f-2bd3ff0cf096
# ╟─88e14ef2-7af1-11eb-23d6-b34b1eff8f87
# ╟─3221a326-7a17-11eb-0fe6-f75798a411b9
# ╟─e383103e-c956-4884-9c59-3e171b5bc11d
# ╟─3208fd8a-7a17-11eb-35ce-4d6b141c1aff
# ╟─32116a92-7a17-11eb-228f-0713510d0348
# ╟─1af9b822-4239-4ac7-bc64-801a3461d9e1
# ╟─32277c3a-7a17-11eb-3763-af68dbb81465
# ╟─2c294933-1425-4e80-84f8-80fe73b2b03a
# ╟─a7363a47-83b6-458a-95dc-448f32d4ef4f
# ╟─d0b54b76-7852-11eb-2398-0911380fa090
# ╟─211911da-7a18-11eb-12d4-65b0dec4b8dc
# ╟─31b975b8-690d-41a0-b1a4-dcbf16a23517
# ╟─5f6cfe59-4d59-4ee6-a32c-712e2a67faa5
# ╠═5bb40ad6-7b33-11eb-0b31-63d5e47fa0e7
# ╟─5d956bd2-8472-47dc-909a-7930612e66de
# ╟─0b15c4a8-c4b3-4dc3-8aba-61222a48fd05
# ╠═7a88b8f0-6f22-4992-931b-54e7f50742f0
# ╠═d770f232-7864-11eb-0e9a-81528e359d39
# ╠═8168345f-67de-46ca-b9c9-a77ca838da74
# ╠═8767709c-478d-4fe5-ad6b-a280b9443460
# ╠═af13e090-7852-11eb-21ae-8b94f25f1a4f
# ╠═f59579f4-7163-415e-a5f3-18531084af45
# ╟─695e405c-786d-11eb-0a6e-bb776d9626ad
# ╟─01e40898-c1c8-481a-b149-9b1bebb00043
# ╟─1bb36c52-a171-4993-ac86-2250e1e87a01
# ╟─43101224-7ac5-11eb-104c-0323cf1813c5
# ╠═a0b3eec1-2ab5-4166-b27d-1e0968c1f06e
# ╠═792df1aa-7a23-11eb-2991-196336246c43
# ╠═8388305c-7a23-11eb-1588-79c3c6ce9db9
# ╟─7b618d71-2b56-42ba-9c3a-5840f4f0d481
# ╟─acbdbfa8-97bc-4194-81b9-4a203e7f8919
# ╟─b52ead96-7a2a-11eb-334f-e5e5ff5867e3
# ╠═b975680f-0b78-4178-861f-5da6d10327e4
# ╠═e0939f0e-d9f5-4ec6-937d-66367fb40fb6
# ╠═624f57db-7f07-4281-a547-d229b9a8413a
# ╠═8692573b-ae74-4f24-8bc3-57c7b85a7034
# ╟─064c14b0-73db-4bcf-9b64-a0e34c642f97
# ╟─16c2b86c-db2d-4408-a6ae-e698fdd495c7
# ╟─35a94847-a048-44fa-944c-33e6c397bf40
# ╟─88f59918-a0e0-4be4-be0a-06b86b90ad58
# ╠═5a5d4de6-7895-11eb-15c6-bda7a4342002
# ╠═b6560404-7b2d-11eb-21d7-a1e55609ebf7
# ╠═6f649efc-7b2d-11eb-1e80-53d84ef98c13
# ╟─20125640-79fd-11eb-1715-1d071cc6cf6c
# ╠═c26b5bb6-7984-11eb-18fe-2b6a524f5c85
# ╠═07a6ac8b-1663-4f07-9434-8915f7f529e1
# ╟─698a6dd0-7a0e-11eb-2766-1f0baa1317d2
# ╟─12740186-7b2f-11eb-35e4-01e6f9ffbb4d
# ╟─020cfb20-8228-11eb-2ee9-6de0fc7700b1
# ╠═ae92d828-7984-11eb-31c8-8b3f9a071c24
# ╟─58e38656-7b2e-11eb-3c70-25a919f9926a
# ╟─2b899624-798c-11eb-20c4-fd5523f7abff
# ╟─c1c74e70-7b2c-11eb-2f26-21f54ad00fb2
# ╟─aed5727a-744f-4b41-96a8-1c193bd42d68
# ╟─1332bc4c-8dfd-4022-8a40-413a85898b2a
# ╠═8522456a-823c-11eb-3cc1-fb720f1cc470
# ╟─0eb9b484-8270-40ed-ad5c-df342467e51a
# ╠═c18b54d5-3dc3-4977-841b-5a73215306d6
# ╟─1c4b19d2-7b30-11eb-007b-ab03052b22d2
# ╟─e302bd1c-7ab5-11eb-03f6-69dcbb817354
# ╟─442bcb3c-7940-11eb-18e5-d3158b74b1dc