-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathbaseline.py
57 lines (46 loc) · 1.54 KB
/
baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import time
from loguru import logger
from tuner_comparison import (
INPUT_SHAPE,
NUM_CLASSES,
N_EPOCH_SEARCH,
)
from utils import (
set_gpu_config,
load_data,
)
def base_experiment():
from tensorflow import keras
from tensorflow.keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
set_gpu_config()
x_test, x_train, y_test, y_train = load_data()
model = keras.Sequential()
model.add(
Conv2D(filters=16, kernel_size=3, activation="relu", input_shape=INPUT_SHAPE)
)
model.add(Conv2D(16, 3, activation="relu"))
model.add(MaxPooling2D(pool_size=2))
model.add(Dropout(rate=0.25))
model.add(Conv2D(32, 3, activation="relu"))
model.add(Conv2D(64, 3, activation="relu"))
model.add(MaxPooling2D(pool_size=2))
model.add(Dropout(rate=0.25))
model.add(Flatten())
model.add(Dense(units=128, activation="relu"))
model.add(Dropout(rate=0.25))
model.add(Dense(NUM_CLASSES, activation="softmax"))
model.compile(
optimizer=keras.optimizers.Adam(1e-3),
loss="sparse_categorical_crossentropy",
metrics=["accuracy"],
)
logger.info("Start training")
search_start = time.time()
model.fit(x_train, y_train, epochs=N_EPOCH_SEARCH, validation_split=0.1)
search_end = time.time()
elapsed_time = search_end - search_start
logger.info(f"Elapsed time (s): {elapsed_time}")
loss, accuracy = model.evaluate(x_test, y_test)
logger.info(f"loss: {loss}, accuracy: {accuracy}")
if __name__ == "__main__":
base_experiment()