-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtuner_comparison.py
107 lines (86 loc) · 2.77 KB
/
tuner_comparison.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import time
from kerastuner.tuners import (
BayesianOptimization,
Hyperband,
RandomSearch,
)
from loguru import logger
from pathlib import Path
from hypermodels import CNNHyperModel
from utils import (
set_gpu_config,
load_data,
)
SEED = 1
NUM_CLASSES = 10
INPUT_SHAPE = (32, 32, 3)
N_EPOCH_SEARCH = 40
HYPERBAND_MAX_EPOCHS = 40
MAX_TRIALS = 20
EXECUTION_PER_TRIAL = 2
BAYESIAN_NUM_INITIAL_POINTS = 1
def run_hyperparameter_tuning():
x_test, x_train, y_test, y_train = load_data()
hypermodel = CNNHyperModel(input_shape=INPUT_SHAPE, num_classes=NUM_CLASSES)
output_dir = Path("./output/cifar10/")
tuners = define_tuners(
hypermodel, directory=output_dir, project_name="simple_cnn_tuning"
)
results = []
for tuner in tuners:
elapsed_time, loss, accuracy = tuner_evaluation(
tuner, x_test, x_train, y_test, y_train
)
logger.info(
f"Elapsed time = {elapsed_time:10.4f} s, accuracy = {accuracy}, loss = {loss}"
)
results.append([elapsed_time, loss, accuracy])
logger.info(results)
def tuner_evaluation(tuner, x_test, x_train, y_test, y_train):
set_gpu_config()
# Overview of the task
tuner.search_space_summary()
# Performs the hyperparameter tuning
logger.info("Start hyperparameter tuning")
search_start = time.time()
tuner.search(x_train, y_train, epochs=N_EPOCH_SEARCH, validation_split=0.1)
search_end = time.time()
elapsed_time = search_end - search_start
# Show a summary of the search
tuner.results_summary()
# Retrieve the best model.
best_model = tuner.get_best_models(num_models=1)[0]
# Evaluate the best model.
loss, accuracy = best_model.evaluate(x_test, y_test)
return elapsed_time, loss, accuracy
def define_tuners(hypermodel, directory, project_name):
random_tuner = RandomSearch(
hypermodel,
objective="val_accuracy",
seed=SEED,
max_trials=MAX_TRIALS,
executions_per_trial=EXECUTION_PER_TRIAL,
directory=f"{directory}_random_search",
project_name=project_name,
)
hyperband_tuner = Hyperband(
hypermodel,
max_epochs=HYPERBAND_MAX_EPOCHS,
objective="val_accuracy",
seed=SEED,
executions_per_trial=EXECUTION_PER_TRIAL,
directory=f"{directory}_hyperband",
project_name=project_name,
)
bayesian_tuner = BayesianOptimization(
hypermodel,
objective='val_accuracy',
seed=SEED,
num_initial_points=BAYESIAN_NUM_INITIAL_POINTS,
max_trials=MAX_TRIALS,
directory=f"{directory}_bayesian",
project_name=project_name
)
return [random_tuner, hyperband_tuner, bayesian_tuner]
if __name__ == "__main__":
run_hyperparameter_tuning()