-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_pw_vilma.cpp
90 lines (74 loc) · 2.58 KB
/
train_pw_vilma.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2015 Kostiantyn Antoniuk
* Copyright (C) 2015 Kostiantyn Antoniuk
*/
#include <string>
#include <fstream>
#include <iostream>
#include <chrono>
#include <vector>
#include "sparse_matrix.h"
#include "dense_vector.h"
#include "data.h"
#include "loss.h"
#include "sparse_vector.h"
#include "oracle/pw_mord.h"
using namespace std;
template <class T>
using DenseVec = Vilma::DenseVector<T>;
typedef DenseVec<double> DenseVecD;
typedef Vilma::MAELoss Loss;
template <class Oracle>
void RunExperiment(const string &features_path, const string &labeling_path,
const string &model_path, const double lambda, const int dim,
const int n_classes, const int bmrm_buffer_size) {
Data data;
std::cout << "Loading train data from txt features&labeling files: "
<< features_path << " " << labeling_path << endl;
if (LoadTxtData(features_path, labeling_path, dim, n_classes, &data)) {
std::cout << "Data loaded.\n";
} else {
std::cout << "Failed to load data!\n";
return;
}
vector<int> cut = {0, 3, 6, 9};
// cut.push_back(0);
// cut.push_back(data.ny / 2);
// if (cut.size() && cut.back() != data.ny - 1) {
// cut.push_back(data.ny - 1);
// }
Oracle oracle(&data, cut);
oracle.set_lambda(lambda);
// set up bmrm orracle buffer size
oracle.set_BufSize(bmrm_buffer_size);
//
// measure learning time
std::chrono::steady_clock::time_point start =
std::chrono::steady_clock::now();
// train W weights
vector<double> opt_w = oracle.Train();
// print learning time
std::chrono::steady_clock::time_point end = std::chrono::steady_clock::now();
std::cout << "Learning took "
<< std::chrono::duration_cast<std::chrono::seconds>(end - start)
.count() << "us.\n";
}
int main(int argc, const char *argv[]) {
assert(argc == 8);
const string features_path = argv[1];
const string labeling_path = argv[2];
const string model_path = argv[3];
const int dim = atoi(argv[4]);
const int n_classes = atoi(argv[5]);
const double lambda = atof(argv[6]);
const int bmrm_buffer_size = atoi(argv[7]);
RunExperiment<VilmaOracle::PwMOrd<Loss>>(features_path, labeling_path,
model_path, lambda, dim, n_classes,
bmrm_buffer_size);
return 0;
}