-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
525 lines (386 loc) · 17.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import argparse
import time
import os
import sys
import multiprocessing as mp
from tqdm import tqdm
import numpy as np
import nibabel as nib
import pandas as pd
import SimpleITK as sitk
import torch
from torch.utils.data import DataLoader
from torch.optim import lr_scheduler
from torch import nn
from torchvision.transforms import Compose
import torchio
from torchio import ImagesDataset, Image, Subject, Queue, DATA
from torchio.data.sampler import ImageSampler
from torchio.transforms import (
ZNormalization,
CenterCropOrPad,
Rescale,
RandomNoise,
RandomFlip,
RandomAffine,
ToCanonical,
Resample
)
from utilities.loss_function import DC_CE
from utilities.sampling import GridSampler, GridAggregator
from scribbleDALoss import CRFLoss
from network.unet import UNet2D5
#from apex import amp
# Define training and patches sampling parameters
num_epochs_max = 10000
patch_size = {'source':(288,128,48), 'target':(288,128,48)}
nb_voxels = {d:np.prod(v) for d,v in patch_size.items()}
queue_length = 16
samples_per_volume = 1
batch_size = 2
NB_CLASSES = 2
# Training parameters
val_eval_criterion_alpha = 0.95
train_loss_MA_alpha = 0.95
nb_patience = 10
patience_lr = 5
weight_decay = 1e-5
MODALITIES_SOURCE = ['t1']
MODALITIES_TARGET = ['t2']
MODALITIES = {'source':MODALITIES_SOURCE, 'target':MODALITIES_TARGET}
def onehot(gt,shape):
with torch.no_grad():
shp_y = gt.shape
gt = gt.long()
y_onehot = torch.zeros(shape)
y_onehot = y_onehot.cuda()
y_onehot.scatter_(1, gt, 1)
return y_onehot
def scribble_loss(outputs, scribbles, criterion):
nb_target = outputs.shape[0]
loss_target = 0.0
for i in range(nb_target):
outputs_i = outputs[i,...].reshape(NB_CLASSES, -1).unsqueeze(0)
scribbles_i = scribbles[i,...].reshape(-1)
outputs_i = outputs_i[:,:,scribbles_i<12]
nb_inf_12 = outputs_i.shape[-1]
outputs_i= outputs_i.reshape(1,NB_CLASSES,1,1,nb_inf_12)
scribbles_i = scribbles_i[scribbles_i<12].reshape(1,1,1,1,nb_inf_12)
loss_target += criterion(outputs_i, scribbles_i.type(torch.cuda.IntTensor))
return loss_target
def infinite_iterable(i):
while True:
yield from i
def train(paths_dict, model, transformation, criterion,
device, save_path, opt):
since = time.time()
dataloaders = dict()
# Define transforms for data normalization and augmentation
for domain in ['source', 'target']:
subjects_domain_train = ImagesDataset(
paths_dict[domain]['training'],
transform=transformation['training'][domain])
subjects_domain_val = ImagesDataset(
paths_dict[domain]['validation'],
transform=transformation['validation'][domain])
# Number of workers
workers = 10
batch_loader_domain_train = infinite_iterable(DataLoader(subjects_domain_train, batch_size=batch_size))
batch_loader_domain_val = infinite_iterable(DataLoader(subjects_domain_val, batch_size=batch_size))
dataloaders_domain = dict()
dataloaders_domain['training'] = batch_loader_domain_train
dataloaders_domain['validation'] = batch_loader_domain_val
dataloaders[domain] = dataloaders_domain
# Training parameters are saved
df_path = os.path.join(opt.model_dir,'log.csv')
if os.path.isfile(df_path): # If the training already started
df = pd.read_csv(df_path, index_col=False)
epoch = df.iloc[-1]['epoch']
best_epoch = df.iloc[-1]['best_epoch']
val_eval_criterion_MA = df.iloc[-1]['MA']
best_val_eval_criterion_MA = df.iloc[-1]['best_MA']
initial_lr = df.iloc[-1]['lr']
model.load_state_dict(torch.load(save_path.format('best')))
else: # If training from scratch
df = pd.DataFrame(columns=['epoch','best_epoch', 'MA', 'best_MA', 'lr'])
val_eval_criterion_MA = None
best_epoch = 0
epoch = 0
initial_lr = opt.learning_rate
model = model.to(device)
# Optimisation policy
optimizer = torch.optim.Adam(model.parameters(), initial_lr, weight_decay=weight_decay, amsgrad=True)
lr_s = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2,
patience=patience_lr,
verbose=True,
threshold=1e-3,
threshold_mode="abs")
# Loop parameters
continue_training = True
ind_batch_train = np.arange(0, samples_per_volume*len(paths_dict['source']['training']), batch_size)
ind_batch_val = np.arange(0, samples_per_volume*max(len(paths_dict['source']['validation']),len(paths_dict['target']['validation'])), batch_size)
ind_batch= dict()
ind_batch['training'] = ind_batch_train
ind_batch['validation'] = ind_batch_val
# Loss initialisation
crf_l = CRFLoss(alpha=opt.alpha, beta=opt.beta, is_da=False)
crf_l_da = CRFLoss(alpha=0, beta=opt.beta_da, is_da=True)
while continue_training:
epoch+=1
print('-' * 10)
print('Epoch {}/'.format(epoch))
for param_group in optimizer.param_groups:
print("Current learning rate is: {}".format(param_group['lr']))
# Each epoch has a training and validation phase
for phase in ['training','validation']:
print(phase)
if phase == 'training':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_loss_target = 0.0
running_loss_source = 0.0
epoch_samples = 0
# Iterate over data
for _ in tqdm(ind_batch[phase]):
# Next source batch
batch_source = next(dataloaders['source'][phase])
labels_source = batch_source['label'][DATA].to(device).type(torch.cuda.IntTensor)
inputs_source = torch.cat([batch_source[k][DATA] for k in MODALITIES_SOURCE],1).to(device)
# Next target batch
batch_target= next(dataloaders['target'][phase])
scribbles_target = batch_target['scribble'][DATA].to(device)
inputs_target = torch.cat([batch_target[k][DATA] for k in MODALITIES_TARGET],1).to(device)
# zero the parameter gradients
optimizer.zero_grad()
# track history if only in train
with torch.set_grad_enabled(phase == 'training'):
outputs, features = model(torch.cat([inputs_source,inputs_target],0), 'source')
outputs_source, features_source = outputs[:batch_size,...], features[:batch_size,...]
outputs_target, features_target = outputs[batch_size:,...], features[batch_size:,...]
# Loss Source with full Labels
loss_source = criterion(outputs_source, labels_source)
# Loss Target on Scribbles
loss_target = scribble_loss(outputs_target, scribbles_target, criterion)
# Within scans regularisation (target only)
if (opt.beta>0 or opt.alpha>0) and phase == 'training':
reg_target = opt.weight_crf/nb_voxels['target']*crf_l(inputs_target, outputs_target)
else:
reg_target = 0.0
# Pairwise scans regularisation (DA)
if opt.beta_da>0 and phase == 'training' and opt.warmup>epoch:
index = torch.LongTensor(2).random_(0, features_source.shape[1])
features_crf = [features_source[:,index,...], features_target[:,index,...]]
features_crf = torch.cat(features_crf,0).detach().cuda()
prob = [onehot(labels_source,outputs_source.shape), torch.nn.Softmax(1)(outputs_target)]
prob = torch.cat(prob,0)
reg_da = opt.weight_crf/nb_voxels['target']*crf_l_da(
I=features_crf,
U=prob)
else:
reg_da = 0.0
if phase == 'training':
loss = loss_source + loss_target + reg_target + reg_da
else:
loss = loss_source + loss_target
# backward + optimize only if in training phase
if phase == 'training':
loss.backward()
optimizer.step()
# statistics
epoch_samples += 1
running_loss += loss.item()
running_loss_source += loss_source.item()
running_loss_target += loss_target.item()
epoch_loss = running_loss / epoch_samples
epoch_loss_source = running_loss_source / epoch_samples
epoch_loss_target = running_loss_target / epoch_samples
print('{} Loss Seg Source: {:.4f}'.format(
phase, epoch_loss_source))
print('{} Loss Seg Target: {:.4f}'.format(
phase, epoch_loss_target))
if phase == 'validation':
if val_eval_criterion_MA is None: # first iteration
val_eval_criterion_MA = epoch_loss
best_val_eval_criterion_MA = val_eval_criterion_MA
else: #update criterion
val_eval_criterion_MA = val_eval_criterion_alpha * val_eval_criterion_MA + (
1 - val_eval_criterion_alpha) * epoch_loss
df = df.append({'epoch':epoch,
'best_epoch':best_epoch,
'MA':val_eval_criterion_MA,
'best_MA':best_val_eval_criterion_MA,
'lr':param_group['lr']}, ignore_index=True)
df.to_csv(df_path, index=False)
lr_s.step(val_eval_criterion_MA)
if val_eval_criterion_MA < best_val_eval_criterion_MA:
best_val_eval_criterion_MA = val_eval_criterion_MA
best_epoch = epoch
torch.save(model.state_dict(), save_path.format('best'))
else:
if epoch-best_epoch>nb_patience:
continue_training=False
if epoch==opt.warmup:
torch.save(model.state_dict(), save_path.format('warmup'))
time_elapsed = time.time() - since
print('Training completed in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best epoch is {}'.format(best_epoch))
def main():
opt = parsing_data()
print("[INFO] Reading data")
# Dictionary with data parameters for NiftyNet Reader
if torch.cuda.is_available():
print('[INFO] GPU available.')
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
else:
raise Exception(
"[INFO] No GPU found or Wrong gpu id, please run without --cuda")
# FOLDERS
fold_dir = opt.model_dir
fold_dir_model = os.path.join(fold_dir,'models')
if not os.path.exists(fold_dir_model):
os.makedirs(fold_dir_model)
save_path = os.path.join(fold_dir_model,'./CP_{}.pth')
output_path = os.path.join(fold_dir,'output')
if not os.path.exists(output_path):
os.makedirs(output_path)
output_path = os.path.join(output_path,'output_{}.nii.gz')
# LOGGING
orig_stdout = sys.stdout
if os.path.exists(os.path.join(fold_dir,'out.txt')):
compt = 0
while os.path.exists(os.path.join(fold_dir,'out_'+str(compt)+'.txt')):
compt+=1
f = open(os.path.join(fold_dir,'out_'+str(compt)+'.txt'), 'w')
else:
f = open(os.path.join(fold_dir,'out.txt'), 'w')
#sys.stdout = f
print("[INFO] Hyperparameters")
print('Alpha: {}'.format(opt.alpha))
print('Beta: {}'.format(opt.beta))
print('Beta_DA: {}'.format(opt.beta_da))
print('Weight Reg: {}'.format(opt.weight_crf))
# SPLITS
split_path_source = opt.dataset_split_source
assert os.path.isfile(split_path_source), 'source file not found'
split_path_target = opt.dataset_split_target
assert os.path.isfile(split_path_target), 'target file not found'
split_path = dict()
split_path['source'] = split_path_source
split_path['target'] = split_path_target
path_file = dict()
path_file['source'] = opt.path_source
path_file['target'] = opt.path_target
list_split = ['training', 'validation', 'inference']
paths_dict = dict()
for domain in ['source','target']:
df_split = pd.read_csv(split_path[domain],header =None)
list_file = dict()
for split in list_split:
list_file[split] = df_split[df_split[1].isin([split])][0].tolist()
list_file['inference'] += list_file['validation']
paths_dict_domain = {split:[] for split in list_split}
for split in list_split:
for subject in list_file[split]:
subject_data = []
for modality in MODALITIES[domain]:
subject_data.append(Image(modality, path_file[domain]+subject+modality+'.nii.gz', torchio.INTENSITY))
if split in ['training', 'validation']:
if domain =='source':
subject_data.append(Image('label', path_file[domain]+subject+'t1_seg.nii.gz', torchio.LABEL))
else:
subject_data.append(Image('scribble', path_file[domain]+subject+'t2scribble_cor.nii.gz', torchio.LABEL))
#subject_data[] =
paths_dict_domain[split].append(Subject(*subject_data))
print(domain, split, len(paths_dict_domain[split]))
paths_dict[domain] = paths_dict_domain
# PREPROCESSING
transform_training = dict()
transform_validation = dict()
for domain in ['source', 'target']:
transformations = (
ToCanonical(),
ZNormalization(),
CenterCropOrPad((288,128,48)),
RandomAffine(scales=(0.9, 1.1), degrees=10),
RandomNoise(std_range=(0, 0.10)),
RandomFlip(axes=(0,)),
)
transform_training[domain] = Compose(transformations)
for domain in ['source', 'target']:
transformations = (
ToCanonical(),
ZNormalization(),
CenterCropOrPad((288,128,48))
)
transform_validation[domain] = Compose(transformations)
transform = {'training': transform_training, 'validation':transform_validation}
# MODEL
norm_op_kwargs = {'eps': 1e-5, 'affine': True}
net_nonlin = nn.LeakyReLU
net_nonlin_kwargs = {'negative_slope': 1e-2, 'inplace': True}
print("[INFO] Building model")
model= UNet2D5(input_channels=1,
base_num_features=16,
num_classes=NB_CLASSES,
num_pool=4,
conv_op=nn.Conv3d,
norm_op=nn.InstanceNorm3d,
norm_op_kwargs=norm_op_kwargs,
nonlin=net_nonlin,
nonlin_kwargs=net_nonlin_kwargs)
print("[INFO] Training")
#criterion = DC_and_CE_loss({}, {})
criterion = DC_CE(NB_CLASSES)
train(paths_dict,
model,
transform,
criterion,
device,
save_path,
opt)
#sys.stdout = orig_stdout
#f.close()
def parsing_data():
parser = argparse.ArgumentParser(
description='3D Segmentation Using PyTorch and NiftyNet')
parser.add_argument('-model_dir',
type=str)
parser.add_argument('-weight_crf',
type=float,
default=0.1)
parser.add_argument('-alpha',
type=float,
default=0)
parser.add_argument('-beta',
type=float,
default=0.1)
parser.add_argument('-beta_da',
type=float,
default=0)
parser.add_argument('-dataset_split_target',
type=str,
default='./split/split_t2_training_30.csv')
parser.add_argument('-dataset_split_source',
type=str,
default='./split/dataset_split_source.csv')
parser.add_argument('-path_source',
type=str,
default='../data/VS_T1/source/')
parser.add_argument('-path_target',
type=str,
default='../data/VS_T1/target/')
parser.add_argument('-learning_rate',
type=float,
default=5*1e-4)
parser.add_argument('-warmup',
type=int,
default=60)
opt = parser.parse_args()
return opt
if __name__ == '__main__':
main()