From 4c2ed76ebd6001a8e8a5cdabf08928bee0f9040b Mon Sep 17 00:00:00 2001 From: KOSASIH Date: Sun, 19 Jan 2025 17:56:53 +0700 Subject: [PATCH] Create variational_circuit.py --- quantum/circuits/variational_circuit.py | 78 +++++++++++++++++++++++++ 1 file changed, 78 insertions(+) create mode 100644 quantum/circuits/variational_circuit.py diff --git a/quantum/circuits/variational_circuit.py b/quantum/circuits/variational_circuit.py new file mode 100644 index 000000000..8b047ed94 --- /dev/null +++ b/quantum/circuits/variational_circuit.py @@ -0,0 +1,78 @@ +# variational_circuit.py +import numpy as np +from qiskit import QuantumCircuit, Aer, execute +from qiskit.visualization import plot_histogram +from qiskit.quantum_info import Statevector +from qiskit.algorithms import VQE +from qiskit.algorithms.optimizers import SLSQP +from qiskit.primitives import Sampler + +def create_variational_circuit(num_qubits, params): + """ + Create a parameterized variational circuit. + + Parameters: + - num_qubits: Number of qubits in the circuit + - params: List of parameters for the variational gates + + Returns: + - QuantumCircuit: The constructed variational circuit + """ + circuit = QuantumCircuit(num_qubits) + + # Apply parameterized RY gates + for i in range(num_qubits): + circuit.ry(params[i], i) + + # Add entangling gates (CNOTs) + for i in range(num_qubits - 1): + circuit.cx(i, i + 1) + + return circuit + +def run_variational_algorithm(num_qubits, initial_params): + """ + Run a variational algorithm (e.g., VQE) using the variational circuit. + + Parameters: + - num_qubits: Number of qubits in the circuit + - initial_params: Initial parameters for the variational circuit + + Returns: + - optimal_value: The minimum eigenvalue found + - optimal_params: The optimal parameters for the variational circuit + """ + # Create a variational circuit + circuit = create_variational_circuit(num_qubits, initial_params) + + # Define the optimizer + optimizer = SLSQP(maxiter=100) + + # Create a VQE instance + vqe = VQE(circuit, optimizer=optimizer, quantum_instance=Aer.get_backend('aer_simulator')) + + # Run VQE + result = vqe.compute_minimum_eigenvalue() + + return result.eigenvalue, result.optimal_point + +def visualize_results(optimal_value, optimal_params): + """ + Visualize the results of the variational algorithm. + + Parameters: + - optimal_value: The minimum eigenvalue found + - optimal_params: The optimal parameters for the variational circuit + """ + print("Minimum Eigenvalue:", optimal_value) + print("Optimal Parameters:", optimal_params) + +if __name__ == "__main__": + num_qubits = 2 # Number of qubits for the variational circuit + initial_params = np.random.rand(num_qubits) * np.pi # Random initial parameters + + # Run the variational algorithm + optimal_value, optimal_params = run_variational_algorithm(num_qubits, initial_params) + + # Visualize the results + visualize_results(optimal_value, optimal_params)