-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmodels.py
581 lines (500 loc) · 22.5 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
import tensorflow as tf
for i in tf.config.experimental.list_physical_devices('GPU'):
tf.config.experimental.set_memory_growth(i,True)
from tensorflow import keras
import keras.backend as K
from tensorflow.keras import layers
from tensorflow.python.profiler.model_analyzer import profile
from tensorflow.python.profiler.option_builder import ProfileOptionBuilder
def get_flops(model, input_sig=[tf.TensorSpec([1, 450, 8, 8, 3])]):
forward_pass = tf.function(
model.call,
input_signature=input_sig)
graph_info = profile(forward_pass.get_concrete_function().graph,
options=ProfileOptionBuilder.float_operation())
return graph_info.total_float_ops
def to_tf(datatape, dtype=tf.float16):
return tf.data.Dataset.from_generator(lambda :datatape, output_types=(dtype, dtype), output_shapes=(datatape.shape, datatape.shape[:1]))
"""
ours ↓
"""
class SpectralTransform(layers.Layer):
def __init__(self, c, size=3):
super().__init__()
self.conv1 = keras.Sequential([
layers.Conv1D(c*2, size, 1, padding='same'),
layers.BatchNormalization(),
layers.Activation('relu'),
])
def call(self, y):
x = tf.transpose(y, (0, 2, 1))
x = tf.signal.rfft(x)
r, i = tf.math.real(x), tf.math.imag(x)
x = tf.concat([r, i], axis=-2)
x = tf.transpose(x, (0, 2, 1))
x = self.conv1(x)
x = tf.transpose(x, (0, 2, 1))
r, i = tf.split(x, 2, axis=-2)
x = tf.complex(r, i)
x = tf.signal.irfft(x)
x = tf.transpose(x, (0, 2, 1))
return layers.add([x,y])
class M_1(keras.Model):
def __init__(self):
super().__init__()
self.a = keras.Sequential([
layers.Reshape((1350, -1)),
layers.Conv1D(64, 3, 3),
])
self.ST1 = SpectralTransform(64, 5)
self.conv1_1 = layers.Conv1D(64, 10, 1, padding='same')
self.atv1 = keras.Sequential([layers.BatchNormalization(), layers.Activation('relu')])
self.ST2 = SpectralTransform(64, 3)
self.conv2 = layers.Conv1D(32, 5, 1, padding='same')
self.atv2 = keras.Sequential([layers.BatchNormalization(), layers.Activation('relu')])
self.z = keras.Sequential([
layers.Conv1D(1, 1, 1),
layers.Reshape((-1,)),
])
self.w = {}
def call(self, x):
x = (x - tf.reshape(tf.reduce_mean(x, axis=(1, 2, 3)), (-1, 1, 1, 1, 3)))/tf.reshape(tf.math.reduce_std(x, axis=(1, 2, 3)), (-1, 1, 1, 1, 3))
x = tf.transpose(x, (0, 1, 4, 2, 3))
x = self.a(x)
x = self.ST1(x)
x = self.conv1_1(x)
x = self.atv1(x)
x = self.ST2(x)
x = self.conv2(x)
x = self.atv2(x)
return self.z(x)
def cross(self):
if 'bn' not in self.w:
self.w['bn'] = self.atv1, self.atv2
self._ = keras.Sequential([layers.BatchNormalization(), layers.Activation('relu')]), keras.Sequential([layers.BatchNormalization(), layers.Activation('relu')])
self._[0].build(input_shape=(None, None, 64))
self._[1].build(input_shape=(None, None, 32))
self._[0].set_weights(self.atv1.get_weights())
self._[1].set_weights(self.atv2.get_weights())
self.atv1, self.atv2 = lambda x:self._[0](x, training=True), lambda x:self._[1](x, training=True)
def intra(self):
if 'bn' in self.w:
self.atv1, self.atv2 = self.w['bn']
self.w.clear()
class M_2(keras.Model):
def __init__(self):
super().__init__()
self.a = keras.Sequential([
layers.Reshape((1350, -1)),
layers.Conv1D(64, 3, 3),
])
#self.ST1 = SpectralTransform(64, 5)
self.conv1_1 = layers.Conv1D(64, 10, 1, padding='same')
#self.conv1_2 = layers.Conv1D(32, 5, 1, padding='same')
self.atv1 = keras.Sequential([layers.BatchNormalization(), layers.Activation('relu')])
#self.ST2 = SpectralTransform(64, 3)
self.conv2 = layers.Conv1D(32, 5, 1, padding='same')
self.atv2 = keras.Sequential([layers.BatchNormalization(), layers.Activation('relu')])
self.z = keras.Sequential([
layers.Conv1D(1, 1, 1),
layers.Reshape((-1,)),
])
self.w = {}
def call(self, x):
x = x - tf.reshape(tf.reduce_mean(x, axis=(1, 2, 3)), (-1, 1, 1, 1, 3))
x = tf.transpose(x, (0, 1, 4, 2, 3))
x = self.a(x)
#x = self.ST1(x)
x = self.conv1_1(x)
x = self.atv1(x)
#x = self.ST2(x)
x = self.conv2(x)
x = self.atv2(x)
return self.z(x)
def cross(self):
if 'atv' not in self.w:
self.w['atv'] = self.atv1, self.atv2
self._ = keras.Sequential([layers.BatchNormalization(), layers.Activation('relu')]), keras.Sequential([layers.BatchNormalization(), layers.Activation('relu')])
self._[0].build(input_shape=(None, None, 64))
self._[1].build(input_shape=(None, None, 32))
self._[0].set_weights(self.atv1.get_weights())
self._[1].set_weights(self.atv2.get_weights())
self.atv1, self.atv2 = lambda x:self._[0](x, training=True), lambda x:self._[1](x, training=True)
def intra(self):
if 'atv' in self.w:
self.atv1, self.atv2 = self.w['atv']
self.w.clear()
class M_3(keras.Model):
def __init__(self):
super().__init__()
self.a = keras.Sequential([
layers.Reshape((1350, -1)),
layers.Conv1D(64, 3, 3),
])
self.ST1 = SpectralTransform(64, 5)
#self.conv1_1 = layers.Conv1D(64, 10, 1, padding='same')
#self.atv1 = keras.Sequential([layers.BatchNormalization(), layers.Activation('relu')])
self.ST2 = SpectralTransform(64, 3)
#self.conv2 = layers.Conv1D(32, 5, 1, padding='same')
#self.atv2 = keras.Sequential([layers.BatchNormalization(), layers.Activation('relu')])
self.z = keras.Sequential([
layers.Conv1D(1, 1, 1),
layers.Reshape((-1,)),
])
self.w = {}
def call(self, x):
x = x - tf.reshape(tf.reduce_mean(x, axis=(1, 2, 3)), (-1, 1, 1, 1, 3))
x = tf.transpose(x, (0, 1, 4, 2, 3))
x = self.a(x)
x = self.ST1(x)
#x = self.conv1_1(x)
#x = self.atv1(x)
x = self.ST2(x)
#x = self.conv2(x)
#x = self.atv2(x)
return self.z(x)
"""
TS-CAN & DeepPhys & EfficientPhys ↓
"""
class Attention_mask(tf.keras.layers.Layer):
def call(self, x):
xsum = K.sum(x, axis=1, keepdims=True)
xsum = K.sum(xsum, axis=2, keepdims=True)
xshape = K.int_shape(x)
return x / xsum * xshape[1] * xshape[2] * 0.5
def get_config(self):
config = super(Attention_mask, self).get_config()
return config
class TSM(tf.keras.layers.Layer):
def call(self, x, n_frame, fold_div=3):
nt, h, w, c = x.shape
x = K.reshape(x, (-1, n_frame, h, w, c))
fold = c // fold_div
last_fold = c - (fold_div - 1) * fold
out1, out2, out3 = tf.split(x, [fold, fold, last_fold], axis=-1)
# Shift left
padding_1 = tf.zeros_like(out1)
padding_1 = padding_1[:, -1, :, :, :]
padding_1 = tf.expand_dims(padding_1, 1)
_, out1 = tf.split(out1, [1, n_frame - 1], axis=1)
out1 = tf.concat([out1, padding_1], axis=1)
# Shift right
padding_2 = tf.zeros_like(out2)
padding_2 = padding_2[:, 0, :, :, :]
padding_2 = tf.expand_dims(padding_2, 1)
out2, _ = tf.split(out2, [n_frame - 1, 1], axis=1)
out2 = tf.concat([padding_2, out2], axis=1)
out = tf.concat([out1, out2, out3], axis=-1)
out = K.reshape(out, (-1, h, w, c))
return out
def get_config(self):
config = super(TSM, self).get_config()
return config
def TSM_Cov2D(x, n_frame, nb_filters=128, kernel_size=(3, 3), activation='tanh', padding='same'):
x = TSM()(x, n_frame)
x = layers.Conv2D(nb_filters, kernel_size, padding=padding, activation=activation)(x)
return x
def TS_CAN(n_frame, nb_filters1, nb_filters2, input_shape, kernel_size=(3, 3), dropout_rate1=0.25, dropout_rate2=0.5,
pool_size=(2, 2), nb_dense=128):
diff_input = layers.Input(shape=input_shape, name='input_1')
rawf_input = layers.Input(shape=input_shape, name='input_2')
d1 = TSM_Cov2D(diff_input, n_frame, nb_filters1, kernel_size, padding='same', activation='tanh')
d2 = TSM_Cov2D(d1, n_frame, nb_filters1, kernel_size, padding='valid', activation='tanh')
r1 = layers.Conv2D(nb_filters1, kernel_size, padding='same', activation='tanh')(rawf_input)
r2 = layers.Conv2D(nb_filters1, kernel_size, activation='tanh')(r1)
g1 = layers.Conv2D(1, (1, 1), padding='same', activation='sigmoid')(r2)
g1 = Attention_mask()(g1)
gated1 = layers.multiply([d2, g1])
d3 = layers.AveragePooling2D(pool_size)(gated1)
d4 = layers.Dropout(dropout_rate1)(d3)
r3 = layers.AveragePooling2D(pool_size)(r2)
r4 = layers.Dropout(dropout_rate1)(r3)
d5 = TSM_Cov2D(d4, n_frame, nb_filters2, kernel_size, padding='same', activation='tanh')
d6 = TSM_Cov2D(d5, n_frame, nb_filters2, kernel_size, padding='valid', activation='tanh')
r5 = layers.Conv2D(nb_filters2, kernel_size, padding='same', activation='tanh')(r4)
r6 = layers.Conv2D(nb_filters2, kernel_size, activation='tanh')(r5)
g2 = layers.Conv2D(1, (1, 1), padding='same', activation='sigmoid')(r6)
g2 = Attention_mask()(g2)
gated2 = layers.multiply([d6, g2])
d7 = layers.AveragePooling2D(pool_size)(gated2)
d8 = layers.Dropout(dropout_rate1)(d7)
d9 = layers.Flatten()(d8)
d10 = layers.Dense(nb_dense, activation='tanh')(d9)
d11 = layers.Dropout(dropout_rate2)(d10)
out = layers.Dense(1)(d11)
model = keras.models.Model(inputs=[diff_input, rawf_input], outputs=out)
return model
def CAN(nb_filters1, nb_filters2, input_shape, kernel_size=(3, 3), dropout_rate1=0.25, dropout_rate2=0.5,
pool_size=(2, 2), nb_dense=128):
diff_input = layers.Input(shape=input_shape)
rawf_input = layers.Input(shape=input_shape)
d1 = layers.Conv2D(nb_filters1, kernel_size, padding='same', activation='tanh')(diff_input)
d2 = layers.Conv2D(nb_filters1, kernel_size, activation='tanh')(d1)
r1 = layers.Conv2D(nb_filters1, kernel_size, padding='same', activation='tanh')(rawf_input)
r2 = layers.Conv2D(nb_filters1, kernel_size, activation='tanh')(r1)
g1 = layers.Conv2D(1, (1, 1), padding='same', activation='sigmoid')(r2)
g1 = Attention_mask()(g1)
gated1 = layers.multiply([d2, g1])
d3 = layers.AveragePooling2D(pool_size)(gated1)
d4 = layers.Dropout(dropout_rate1)(d3)
r3 = layers.AveragePooling2D(pool_size)(r2)
r4 = layers.Dropout(dropout_rate1)(r3)
d5 = layers.Conv2D(nb_filters2, kernel_size, padding='same', activation='tanh')(d4)
d6 = layers.Conv2D(nb_filters2, kernel_size, activation='tanh')(d5)
r5 = layers.Conv2D(nb_filters2, kernel_size, padding='same', activation='tanh')(r4)
r6 = layers.Conv2D(nb_filters2, kernel_size, activation='tanh')(r5)
g2 = layers.Conv2D(1, (1, 1), padding='same', activation='sigmoid')(r6)
g2 = Attention_mask()(g2)
gated2 = layers.multiply([d6, g2])
d7 = layers.AveragePooling2D(pool_size)(gated2)
d8 = layers.Dropout(dropout_rate1)(d7)
d9 = layers.Flatten()(d8)
d10 = layers.Dense(nb_dense, activation='tanh')(d9)
d11 = layers.Dropout(dropout_rate2)(d10)
out = layers.Dense(1)(d11)
model = keras.models.Model(inputs=[diff_input, rawf_input], outputs=out)
return model
class DeepPhys_end_to_end(keras.Model):
def __init__(self, size=(36, 36)):
super().__init__()
self.size = size
self.deepphys = CAN(32, 64, (*size, 3))
def call(self, x):
x_ = x[1:] - x[:-1]
x_ = (x_ - tf.reshape(tf.reduce_mean(x_, axis=(1,2 )), (-1, 1, 1, 3)))/tf.reshape(tf.math.reduce_std(x_, axis=(1, 2))+1e-6, (-1, 1, 1, 3))
return self.deepphys((tf.concat([x_, tf.zeros([1, *self.size, 3])], axis=0), tf.expand_dims(tf.reduce_mean(x, axis=(0, )), axis=0)))
class TS_CAN_end_to_end(keras.Model):
def __init__(self, n=16, size=(36, 36)):
super().__init__()
self.size = size
self.ts_can = TS_CAN(n, 32, 64, (*size, 3))
def call(self, x):
x_ = x[1:] - x[:-1]
x_ = (x_ - tf.reshape(tf.reduce_mean(x_, axis=(1,2 )), (-1, 1, 1, 3)))/tf.reshape(tf.math.reduce_std(x_, axis=(1, 2))+1e-6, (-1, 1, 1, 3))
return self.ts_can((tf.concat([x_, tf.zeros([1, *self.size, 3])], axis=0), tf.expand_dims(tf.reduce_mean(x, axis=(0, )), axis=0)))
class EP(keras.Model):
def __init__(self, n=32):
super().__init__()
self.n_frame = n
self.TSM = TSM()
self.mc1 = layers.Conv2D(32, kernel_size=3, padding='same', activation='tanh')
self.mc2 = layers.Conv2D(32, kernel_size=3, activation='tanh')
self.mc3 = layers.Conv2D(64, kernel_size=3, padding='same', activation='tanh')
self.mc4 = layers.Conv2D(64, kernel_size=3, activation='tanh')
self.attc1 = layers.Conv2D(1, kernel_size=1, activation='sigmoid')
self.msk = Attention_mask()
self.attc2 = layers.Conv2D(1, kernel_size=1, activation='sigmoid')
self.avgp = layers.AvgPool2D(2)
self.dp1 = layers.Dropout(0.25)
self.dp2 = layers.Dropout(0.5)
self.dense1 = layers.Dense(128 ,activation='tanh')
self.dense2 = layers.Dense(1)
self.bn = layers.BatchNormalization()
self.ft = layers.Flatten()
def call(self, x):
x = x[1:]-x[:-1]
x = tf.concat([x, tf.zeros([1, 72, 72, 3])], axis=0)
x = self.bn(x)
x = self.TSM(x, self.n_frame)
x = self.mc1(x)
x = self.TSM(x, self.n_frame)
x = self.mc2(x)
msk = self.msk(self.attc1(x))
x = layers.multiply([x, msk])
x = self.avgp(x)
x = self.dp1(x)
x = self.TSM(x, self.n_frame)
x = self.mc3(x)
x = self.TSM(x, self.n_frame)
x = self.mc4(x)
msk = self.msk(self.attc2(x))
x = layers.multiply([x, msk])
x = self.avgp(x)
x = self.dp1(x)
#x = tf.reshape(x, (-1, tf.reduce_prod(x.get_shape()[1:])))
x = self.ft(x)
x = self.dense1(x)
x = self.dp2(x)
x = self.dense2(x)
return x
"""
PhysNet ↓
"""
class PhysNet(keras.Model):
def __init__(self, norm='batch'):
self.norm = norm
if norm == 'batch':
norm = layers.BatchNormalization
if norm == 'layer':
norm = lambda :layers.LayerNormalization(axis=(1,))
if norm == 'layer_frozen':
norm = lambda :layers.LayerNormalization(axis=(1,), trainable=False)
super().__init__()
self.ConvBlock1 = keras.Sequential([
layers.Conv3D(16, kernel_size=(1, 5, 5), strides=1, padding='same'),
norm(),
layers.Activation('relu')
])
self.ConvBlock2 = keras.Sequential([
layers.Conv3D(32, kernel_size=(3, 3, 3), strides=1, padding='same'),
norm(),
layers.Activation('relu')
])
self.ConvBlock3 = keras.Sequential([
layers.Conv3D(64, kernel_size=(3, 3, 3), strides=1, padding='same'),
norm(),
layers.Activation('relu')
])
self.ConvBlock4 = keras.Sequential([
layers.Conv3D(64, kernel_size=(3, 3, 3), strides=1, padding='same'),
norm(),
layers.Activation('relu')
])
self.ConvBlock5 = keras.Sequential([
layers.Conv3D(64, kernel_size=(3, 3, 3), strides=1, padding='same'),
norm(),
layers.Activation('relu')
])
self.ConvBlock6 = keras.Sequential([
layers.Conv3D(64, kernel_size=(3, 3, 3), strides=1, padding='same'),
norm(),
layers.Activation('relu')
])
self.ConvBlock7 = keras.Sequential([
layers.Conv3D(64, kernel_size=(3, 3, 3), strides=1, padding='same'),
norm(),
layers.Activation('relu')
])
self.ConvBlock8 = keras.Sequential([
layers.Conv3D(64, kernel_size=(3, 3, 3), strides=1, padding='same'),
norm(),
layers.Activation('relu')
])
self.ConvBlock9 = keras.Sequential([
layers.Conv3D(64, kernel_size=(3, 3, 3), strides=1, padding='same'),
norm(),
layers.Activation('relu')
])
self.upsample = keras.Sequential([
layers.Conv3DTranspose(64, kernel_size=(4, 1, 1), strides=(2, 1, 1), padding='same'),
norm(),
layers.Activation('elu')
])
self.upsample2 = keras.Sequential([
layers.Conv3DTranspose(64, kernel_size=(4, 1, 1), strides=(2, 1, 1), padding='same'),
norm(),
layers.Activation('elu')
])
self.convBlock10 = layers.Conv3D(1, kernel_size=(1, 1, 1), strides=1)
self.MaxpoolSpa = layers.MaxPool3D((1, 2, 2), strides=(1, 2, 2))
self.MaxpoolSpaTem = layers.MaxPool3D((2, 2, 2), strides=2)
self.poolspa = layers.AvgPool3D((1, 2, 2))
self.flatten = layers.Reshape((-1,))
def call(self, x):
if self.norm == 'batch':
training=True
else:
training=False
x = self.ConvBlock1(x, training=training)
x = self.MaxpoolSpa(x)
x = self.ConvBlock2(x, training=training)
x = self.ConvBlock3(x, training=training)
x = self.MaxpoolSpaTem(x)
x = self.ConvBlock4(x, training=training)
x = self.ConvBlock5(x, training=training)
x = self.MaxpoolSpaTem(x)
x = self.ConvBlock6(x, training=training)
x = self.ConvBlock7(x, training=training)
x = self.MaxpoolSpa(x)
x = self.ConvBlock8(x, training=training)
x = self.ConvBlock9(x, training=training)
x = self.upsample(x, training=training)
x = self.upsample2(x, training=training)
x = self.poolspa(x)
x = self.convBlock10(x, training=training)
x = self.flatten(x)
x = x-tf.expand_dims(tf.reduce_mean(x, axis=-1), -1)
return x
"""
ResNet ↓
resnet18 = ResNet([2, 2, 2, 2])
"""
class BasicBlock(layers.Layer):
def __init__(self, filter_num, stride=1):
super().__init__()
self.conv1 = layers.Conv2D(filter_num, 3, strides=stride, padding='same')
self.bn1 = layers.BatchNormalization()
self.relu = layers.ReLU()
self.conv2 = layers.Conv2D(filter_num, 3, strides=1, padding='same')
self.bn2 = layers.BatchNormalization()
if stride != 1:
self.downsample = keras.Sequential()
self.downsample.add(layers.Conv2D(filter_num, (1, 1), strides=stride))
else:
self.downsample = lambda x:x
def call(self, inputs, training=False):
out = self.conv1(inputs, training=training)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out, training=training)
out = self.bn2(out)
identity = self.downsample(inputs)
output = layers.add([out, identity])
output = self.relu(output)
return output
class ResNet(keras.Model):
def __init__(self, layer_dims, out=1):
super(ResNet, self).__init__()
# 第一层
self.stem = keras.Sequential([
layers.Conv2D(64, 7, strides=(1, 1)),
layers.BatchNormalization(),
layers.Activation('relu'),
layers.AvgPool2D(pool_size=(2, 2), strides=(2, 2), padding='same')
])
# 中间层的四个残差块:conv2_x,conv3_x,conv4_x,conv5_x
self.layer1 = self.build_resblock(64, layer_dims[0])
self.layer2 = self.build_resblock(128, layer_dims[1], stride=2)
self.layer3 = self.build_resblock(256, layer_dims[2], stride=2)
self.layer4 = self.build_resblock(512, layer_dims[3], stride=2)
# 池化
self.pool = layers.AvgPool2D(7, padding='same')
# 全连接层
self.fc = keras.Sequential([layers.Flatten(), layers.Dense(out)])
def call(self, inputs, training=None, **kwargs):
x = inputs
x = self.stem(x,training=training)
x = self.layer1(x,training=training)
x = self.layer2(x,training=training)
x = self.layer3(x,training=training)
x = self.layer4(x,training=training)
x = self.pool(x,training=training)
x1 = self.fc(x,training=training)
return x1
# 构建残差块(将几个相同的残差模块堆叠在一起)
def build_resblock(self, filter_num, blocks, stride=1):
res_blocks = keras.Sequential()
res_blocks.add(BasicBlock(filter_num, stride))
for _ in range(1, blocks):
res_blocks.add(BasicBlock(filter_num, stride=1))
return res_blocks
"""
loss ↓
"""
"""
在TS-CAN和DeepPhys中使用以下loss都需要将输出和标签转置
def np_loss_tscan(x, y):
return np_loss(tf.transpose(x), tf.transpose(y))
"""
def np_loss(x, y):
x_, y_ = tf.expand_dims(tf.reduce_mean(x, axis=-1), -1), tf.expand_dims(tf.reduce_mean(y, axis=-1), -1)
return 1-tf.reduce_sum((x-x_)*(y-y_), axis=-1)/(tf.reduce_sum((x-x_)**2, axis=-1)*tf.reduce_sum((y-y_)**2, axis=-1))**0.5
def SNR(x, y):
x, y = (x-tf.expand_dims(tf.reduce_mean(x, axis=-1), -1))/(tf.expand_dims(tf.math.reduce_std(x, axis=-1), -1)+1e-6), (y-tf.expand_dims(tf.reduce_mean(y, axis=-1), -1))/(tf.expand_dims(tf.math.reduce_std(y, axis=-1), -1)+1e-6)
A_s = tf.reduce_mean(tf.abs(tf.signal.rfft(x)), axis=-1)
A_n = tf.reduce_mean(tf.abs(tf.signal.rfft(y-x)), axis=-1)
#A_n = tf.reduce_mean(tf.abs(tf.signal.rfft(y)), axis=-1) - A_s
return 8.685889*tf.math.log((A_s/A_n)**2)
#return (A_s/A_n)**2
def nSNR_loss(x, y):
return -SNR(x, y)