-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathvisualization.py
146 lines (131 loc) · 5.63 KB
/
visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
from utils import *
import panel as pn
import matplotlib.pyplot as plt
from PIL import Image
fig, (ax1, ax2) = plt.subplots(nrows=2)
plt.subplots_adjust(hspace=0.5)
plt.ion()
def get_plot(n, r=2.5):
r = np.array([n-r, n+r])-max(n+r-data['ts'][-1], 0)-min(n-r, 0)
for a in range(data['ts'].shape[0]):
if data['ts'][a]>=r[0]:
break
for b in range(data['ts'].shape[0]-a):
b = a+b
if data['ts'][b]>=r[1]:
break
ts = data['ts'][a:b]
label = data['label'][a:b]
label = (label-label.mean())/(label.std()+1e-6)
pre = data['predict'][a:b]
pre = (pre-pre.mean())/(pre.std()+1e-6)
fps = 1/(ts[1:]-ts[:-1]).mean()
if data['ft']:
pre = bandpass_filter(pre, lowcut=data['band'][0], highcut=data['band'][1], fs=fps)
ax2.cla()
p, q = welch(label, fps, nfft=1e5/fps, nperseg=len(label)-1)
x, y = p[(p>0)&(p<3)], q[(p>0)&(p<3)]
hr, h = x[np.argmax(y)]*60, np.max(y)
ax2.plot(x*60, y, label='GT', color='blue')
ax2.plot([hr], [h], 'o', color='blue')
ax2.annotate(str(round(hr, 2)), xytext=(hr, h), xy=(hr, h), color='blue')
p, q = welch(pre, fps, nfft=1e5/fps, nperseg=len(label)-1)
x, y = p[(p>0)&(p<3)], q[(p>0)&(p<3)]
hr, h = x[np.argmax(y)]*60, np.max(y)
ax2.plot(x*60, y, label='rPPG', color='red')
ax2.plot([hr], [h], 'o', color='red')
ax2.annotate(str(round(hr, 2)), xy=(hr, h), color='red')
ax2.legend(loc='upper right');
#print(y)
ax2.set_yticks([])
ax2.set_xlabel('Heart Rate')
ax2.spines['right'].set_color('none')
ax2.spines['left'].set_color('none')
ax2.spines['top'].set_color('none')
ax1.cla()
ax1.set_yticks([])
ax1.set_xlabel('Time')
ax1.spines['right'].set_color('none')
ax1.spines['left'].set_color('none')
ax1.spines['top'].set_color('none')
ax1.plot(ts, label, label='GT', color='blue')
ax1.plot(ts, pre, label='rPPG', color='red')
#ax1.legend(loc='upper right');
return fig
data = {}
ft = pn.Row(pn.widgets.Checkbox(name='Band-pass filter', margin=(20, 0, 0, 300), width=120), pn.widgets.RangeSlider(name='Band', start=0.01, end=4, value=(0.6, 2.5), step=0.01))
def show_panel():
global video, bvp_plot
if app[0][0].value==video[0] and app[0][1].value!=video[1]:
video[1] = app[0][1].value
with h5py.File(f'results/{video[0]}', 'r') as f:
base = f.attrs['dataset']
f = f[video[1]]
data['vid_path'] = (base, app[0][1].value)
data['label'] = f['label'][:]
data['predict'] = f['predict'][:]
data['ts'] = f['timestamp'][:]-f['timestamp'][0]
if os.path.exists(data['vid_path'][0]):
with h5py.File(data['vid_path'][0], 'r') as f:
img = Image.fromarray(f[data['vid_path'][1]]['video'][0])
'''
data['frames'] = f[data['vid_path'][1]]['video'][:]
if data['frames'].dtype != np.uint8:
data['frames'] = (data['frames']*255).astype(np.uint8)
'''
else:
#data['frames'] = np.full((data['ts'].shape[0], 128, 128, 3), 255, dtype=np.uint8)
img = Image.fromarray(np.full((128, 128, 3), 255, dtype=np.uint8))
app[1] = pn.Column(ft, pn.Row(None, None), pn.widgets.FloatSlider(name='Time', value=0, start=0, end=data['ts'][-1]-data['ts'][0], width=960, step=0.01))
data['t'] = app[1][2].value
data['ft'] = app[1][0][0].value
data['band'] = app[1][0][1].value
bvp_plot = get_plot(0)
app[1][1][0] = pn.pane.Matplotlib(bvp_plot, dpi=144)
#app[1][1][1] = pn.pane.image.PNG(Image.fromarray(data['frames'][0]), width=256, height=256)
app[1][1][1] = pn.pane.image.PNG(img, width=256, height=256)
if 't' in data and (data['t'] != app[1][2].value or data['ft']!=app[1][0][0].value or data['band']!=app[1][0][1].value):
data['t'] = app[1][2].value
data['ft'] = app[1][0][0].value
data['band'] = app[1][0][1].value
if os.path.exists(data['vid_path'][0]):
with h5py.File(data['vid_path'][0], 'r') as f:
for n in range(f[data['vid_path'][1]]['video'].shape[0]):
if data['t']<data['ts'][n]:
break
img = Image.fromarray(f[data['vid_path'][1]]['video'][n])
else:
img = Image.fromarray(np.full((128, 128, 3), 255, dtype=np.uint8))
bvp_plot = get_plot(data['t'])
app[1][1][0] = pn.pane.Matplotlib(bvp_plot, dpi=144)
app[1][1][1] = pn.pane.image.PNG(img, width=256, height=256)
video = ['', '']
def show_videos():
global video
if app[0][0].value != video[0]:
with h5py.File(f'results/{app[0][0].value}', 'r') as f:
i = {f"{j.attrs['SNR']:>5.2f}dB\t{j.attrs['path']}":i for i, j in f.items()}
app[0][1] = pn.widgets.Select(options=i, size=50)
video[0] = app[0][0].value
show_panel()
def show_results():
global files
if files != [i for i in os.listdir('results') if i[-3:]=='.h5']:
app[0][0] = pn.widgets.Select(options=files)
def main():
show_results()
show_videos()
show_panel()
files=[i for i in os.listdir('results') if i[-3:]=='.h5']
select = pn.widgets.Select(options=files)
app = pn.Row(pn.Column(select, None), None)
def main_loop():
while 1:
try:
main()
except Exception as e:
print(e)
time.sleep(1)
time.sleep(0.1)
pn.state.schedule_task('main', main, period='0.04s')
app.show()