-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsoss_scene.py
68 lines (59 loc) · 2.32 KB
/
soss_scene.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
"""
The code here takes a scene image and convolves with the NIRISS SOSS "PSF"
image to produce a simulated dispersed scene.
"""
import numpy
from astropy.io import fits
from scipy import signal
# from numpy.fft import rfftn, irfftn, fftshift, ifftshift
def soss_scene(scene_image, sossoffset=True, path='./'):
"""
Convolve a scene image with the WFSS PSF and return dispersed image over
the 2322x2322 pixel POM image area.
Parameters
----------
scene_image: A numpy 2-d image (float) of an imaging scene to disperse.
must be the full 4231x4231 pixel work scene image
sossoffset: A Boolean value, says whether to* offset the reference
position to the SOSS acquisition position or not
path: An optional string value, the path to the SOSS PSF image
Returns
-------
outimage: A numpy 2-d image (float) of the dispersed scene; size
2322x2322 pixels, or None if there is an issue
The scene image is multiplied by the spot mask before the convolution in
the area that corresponds to the output pixels.
"""
imshape = scene_image.shape
if (imshape[0] != 4231) or (imshape[1] != 4231):
print('Error in soss_scene: wrong size image' + \
'(%d, %d) passed to the routine.' % (imshape[1], imshape[0]))
return None
try:
if path[-1] != '/':
path = path+'/'
spotmask = fits.getdata(path+'occulting_spots_mask.fits')
except:
print('Error: the occulting spot mask was not found.')
spotmask = numpy.zeros((2048, 2048), dtype=numpy.float32)+1.
psfname = 'gr700xd_psfimage.fits'
try:
psfimage = fits.getdata(path+psfname)
except:
print('Error: PSF image %s not found in directory %s.' % (
psfname, path))
return None
if not sossoffset:
new_image = scene_image
else:
new_image = scene_image*0.
new_image[174:, 930:] = scene_image[0:4057, 0:3301]
field_image = numpy.copy(new_image[955:3277, 955:3277])
y1 = 137
x1 = 137
field_image[y1:y1+2048, x1:x1+2048] = \
field_image[y1:y1+2048,x1:x1+2048]*spotmask
outimage = signal.fftconvolve(field_image, psfimage, mode='same')
# scale by the grism total throughput of 0.8
outimage = outimage*0.8
return outimage