-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbike_helmet_detector_image.py
83 lines (63 loc) · 3.14 KB
/
bike_helmet_detector_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# This is a sample Python script.
# Author: Krishnaragavan
# Date: 10/06/2021
# Import packages
import os
import sys
import cv2
import numpy as np
import tensorflow as tf
from utils import label_map_util
from utils import visualization_utils as vis_util
def detection(helmet_inference_path, frozen_graph_path, labelmap, number_of_classes, input):
detection_graph = tf.Graph()
# Name of the directory containing the object detection module we're using
TRAINED_MODEL_DIR = helmet_inference_path
# Path to frozen detection graph .pb file, which contains the model that is used
# for object detection.
PATH_TO_CKPT = TRAINED_MODEL_DIR + frozen_graph_path
print(PATH_TO_CKPT)
# Path to label map file
PATH_TO_LABELS = TRAINED_MODEL_DIR + labelmap
# Number of classes the object detector can identify
NUM_CLASSES = number_of_classes
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(
label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# Load the Tensorflow model into memory.
print("> ====== Loading frozen graph into memory")
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
sess = tf.Session(graph=detection_graph)
print("> ====== Inference graph loaded.")
# Define input and output tensors (i.e. data) for the object detection classifier
# Input tensor is the image
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Output tensors are the detection boxes, scores, and classes
# Each box represents a part of the image where a particular object was detected
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represents level of confidence for each of the objects.
# The score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
# Number of objects detected
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
img = input
# Load the Tensorflow model into memory.
# Load image using OpenCV and
# expand image dimensions to have shape: [1, None, None, 3]
# i.e. a single-column array, where each item in the column has the pixel RGB value
sess = tf.Session(graph=detection_graph)
image = cv2.imread(img)
image = cv2.resize(image, (1080, 1080))
image_expanded = np.expand_dims(image, axis=0)
# Perform the actual detection by running the model with the image as input
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_expanded})
return category_index,image, boxes, scores, classes, num