-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetrics.py
111 lines (94 loc) · 3.16 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
"""
Metrics, used in the paper.
"""
import numpy as np
def compute_error(output, labels):
"""
Compute the error function.
Parameters
----------
output : (S, N) np.ndarray
A sample-by-neurons transposed output activations.
labels : (S,) np.ndarray
Sample class labels (ids).
Returns
-------
error : float
The total error.
"""
assert len(output) == len(labels)
norm = np.linalg.norm(output, axis=1, keepdims=True)
norm += 1e-10 # add a small value to avoid division by zero
output = output / norm
cosine_similarity = output.dot(output.T)
error = []
labels_unique = np.unique(labels)
# Labels repeat in clustering experiment and are unique in decorrelation
clustering = len(labels) > len(labels_unique)
for label in labels_unique:
mask_same = labels == label
cos_other = cosine_similarity[mask_same][:, ~mask_same]
cos_other = cos_other.mean()
if clustering:
cos_same = cosine_similarity[mask_same][:, mask_same]
n = cos_same.shape[0]
if n == 1:
continue
ii, jj = np.triu_indices(n, k=1)
cos_same = cos_same[ii, jj].mean()
error.append(1 - cos_same + cos_other)
else:
error.append(cos_other)
if len(error) == 0:
return None
error = np.mean(error)
return error
def cluster_centroids(output, labels):
centroids = [output[labels == l].mean(axis=0) for l in np.unique(labels)]
centroids = np.vstack(centroids)
return centroids
def compute_accuracy(output, labels):
"""
Compute the accuracy by checking the predicted labels with the true
`labels`. The predicted label `l` of a sample :math:`x` is computed as
.. math::
l = \argmin_i \cos(x, x_c^i)
where :math:`\cos` is the cosine similarity between two vectors and
:math:`x_c^i` is the mean output vector (centroid) for the class `i`.
Parameters
----------
output : (S, N) np.ndarray
A sample-by-neurons transposed output activations.
labels : (S,) np.ndarray
Sample class labels (ids).
Returns
-------
accuracy : float
The accuracy.
"""
assert len(output) == len(labels)
norm = np.linalg.norm(output, axis=1, keepdims=True)
norm += 1e-10 # add a small value to avoid division by zero
output = output / norm
centroids = cluster_centroids(output, labels)
cosine_similarity = output.dot(centroids.T)
labels_pred = cosine_similarity.argmax(axis=1)
accuracy = (labels == labels_pred).mean()
return accuracy
def compute_convergence(output, output_prev):
"""
Compute the convergence by comparing with the output from the previous
iteration.
The convergence is measured as the mean of a XOR operation on two vectors.
Parameters
----------
output, output_prev : np.ndarray
Current and previous iteration binary outputs.
Returns
-------
float
The model convergence between 0 (fully converged) and 1 (fully chaotic)
"""
if output is None or output_prev is None:
return None
return (output ^ output_prev).mean()