-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgen_analy_report_train_test_curves.py
181 lines (143 loc) · 6.77 KB
/
gen_analy_report_train_test_curves.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# -*- coding: utf-8 -*-
"""
Created on Sun Nov 10 15:16:23 2019
@author: niall
"""
import ipdb
import os
import argparse
import pandas as pd
import numpy as np
from train import read_data,create_dataset
from plot_learning_curve import plot_learning_curve
import sklearn
from sklearn.ensemble import BaggingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.preprocessing import MinMaxScaler
from sklearn.pipeline import Pipeline
from sklearn.linear_model import SGDClassifier
from sklearn.kernel_approximation import Nystroem
import matplotlib.pyplot as plt
import glob
import json
def arg_parser():
parser=argparse.ArgumentParser()
parser.add_argument('-rw_r_dir','--raw_results_dir',
help='source results directory where raw results are read in for analysis',
required=True)
parser.add_argument('-dst_dir','--dest_dir',
help='destination directory to write output dataframes and plots from analysis',
required=True)
parser.add_argument('-trn_data_dir','--train_data_dir',
help='source directory where original raw data is read in for additional training curve plot analysis',
required=True)
parser.add_argument('-tst_data_dir','--test_data_dir',
help='source directory where raw test data is read in for additional curve plotting analysis',
required=True)
parser.add_argument('-txt_params','--haralick_txt_params',
help='source directory to original json of texture features',
required=True)
parser.add_argument('-t','--text_dir',
help='Destination path to texture feature files created during analysis',
required=True)
return parser.parse_args()
def extract_model_type(file_nm_lst:list)->list:
"""The purpose of this method is to take a list of files and return
a list of dictionary of the type of model they are and the scoring function to generate them"""
list_return=[]
#ipdb.set_trace()
for file in file_nm_lst:
key_words={'score':['f1','jaccard'],
'score_method':['weighted','macro'],
'model_type':['svm','log_reg']}
file_bs_nm=os.path.splitext(os.path.basename(file))[0]
key_words_tmp={k:[x for x in v if file_bs_nm.lower().find(x)!=-1][0] for k,v in key_words.items()}
key_words_tmp['path']=file
list_return.append(key_words_tmp)
return list_return
def gen_file_lst(results_dir):
"""Generating file list for analysis """
root_fl=[]
for root,subdir,files in os.walk(results_dir):
if len(files)>0:
file_lst=glob.glob(os.path.join(root,'*.npy'))
root_fl=root_fl+file_lst
return root_fl
def main(args):
#Getting all training reports for analysis and creating json dictionary of information on file.
train_reports=gen_file_lst(args.raw_results_dir)
train_report_detail=extract_model_type(train_reports)
with open(args.haralick_txt_params,'r') as fb:
haralick_params=json.load(fb)
#
trn_image_dict = read_data(args.train_data_dir)
tst_image_dict = read_data(args.test_data_dir)
#Iterating through reports for analysis
for data_combos in train_report_detail:
data_combos['model_type']='svm_sgd'
#Generate training numpy arrays for analysis
#ipdb.set_trace()
X_train, y_train = create_dataset(trn_image_dict,haralick_params,args.text_dir,data_combos['model_type'])
X_test, y_test= create_dataset(tst_image_dict,haralick_params,args.text_dir,data_combos['model_type'])
scaling = MinMaxScaler(feature_range=(0,1)).fit(X_train)
X_train = scaling.transform(X_train)
X_test = scaling.transform(X_test)
#load data for analysis into dataframe
tmp_arr_dict=np.load(data_combos['path'],allow_pickle=True)
tmp_arr_df=tmp_arr_dict.item().get('cv_results_')
tmp_arr_df=pd.DataFrame.from_dict(tmp_arr_df)
tmp_arr_df['params'].apply(pd.Series)
#Perform analysis for generating
tmp_arr_df.sort_values('rank_test_score',ascending=True,inplace=True)
trl_arr_df_params_lst=tmp_arr_df['params'][:5].tolist()
#Restructure file name for analysis
#ipdb.set_trace()
if data_combos['model_type']!='svm_sgd':
model_params_reformat=reformat_model_params(trl_arr_df_params_lst)
else:
model_params_reformat=trl_arr_df_params_lst
#ipdb.set_trace()
#Taking the top 5 performers forward for running analysis with training and testing curves.
for vals in model_params_reformat:
#Generating detailed tile for model performance.
title2='_'.join(['_'.join((k,str(v))) for k,v in vals.items()])
title1='_'.join([v for k,v in data_combos.items() if k!='path'])
title=title1+'_'+title2
tmp_estimator=gen_estimator(data_combos['model_type'],vals)
tmp_fig=plot_learning_curve(tmp_estimator, title, X_train, y_train,
cv=3,n_jobs=-1)
#Save figure for analysis
dst_dir_f=os.path.join(args.dest_dir,title+'.jpeg')
tmp_fig.savefig(dst_dir_f)
def gen_estimator(model_type:str,model_params:dict)-> sklearn.base.BaseEstimator:
"""The purpose of this method is to generate model parameters for analyss """
#ipdb.set_trace()
if model_type.lower()=='svm_sgd':
OVR_pipe=Pipeline([('nystreum',Nystroem(random_state=1)),
('ovr',SGDClassifier(max_iter=5000, tol=1e-3)),])
#ipdb.set_trace()
OVR_pipe.set_params(**model_params)
return OVR_pipe
elif model_type.lower()=='svm_linear':
return BaggingClassifier(base_estimator=SVC(random_state=0,max_iter=5000,**model_params),n_estimators=50)
elif model_type.lower()=='log_reg':
return LogisticRegression(max_iter=5000,**model_params)
else:
raise ValueError
def reformat_model_params(trl_arr_df_params_lst:list)->list:
"""The purpose of this method is to reformat the keys of the model parameters"""
reformat_lst=[]
for params in trl_arr_df_params_lst:
tmp_dict={}
for k,v in params.items():
splt_lst=k.split('__')[-1]
if type(v) is np.float64:
v=round(v,2)
tmp_dict[splt_lst]=v
#ipdb.set_trace()
reformat_lst.append(tmp_dict)
return reformat_lst
if __name__=='__main__':
args=arg_parser()
main(args)