forked from facebookresearch/detectron2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
211 lines (177 loc) · 7.16 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import glob
import os
import shutil
from os import path
from setuptools import find_packages, setup
from typing import List
import torch
from torch.utils.cpp_extension import CUDA_HOME, CppExtension, CUDAExtension
from torch.utils.hipify import hipify_python
torch_ver = [int(x) for x in torch.__version__.split(".")[:2]]
assert torch_ver >= [1, 4], "Requires PyTorch >= 1.4"
def get_version():
init_py_path = path.join(path.abspath(path.dirname(__file__)), "detectron2", "__init__.py")
init_py = open(init_py_path, "r").readlines()
version_line = [l.strip() for l in init_py if l.startswith("__version__")][0]
version = version_line.split("=")[-1].strip().strip("'\"")
# The following is used to build release packages.
# Users should never use it.
suffix = os.getenv("D2_VERSION_SUFFIX", "")
version = version + suffix
if os.getenv("BUILD_NIGHTLY", "0") == "1":
from datetime import datetime
date_str = datetime.today().strftime("%y%m%d")
version = version + ".dev" + date_str
new_init_py = [l for l in init_py if not l.startswith("__version__")]
new_init_py.append('__version__ = "{}"\n'.format(version))
with open(init_py_path, "w") as f:
f.write("".join(new_init_py))
return version
def get_extensions():
this_dir = path.dirname(path.abspath(__file__))
extensions_dir = path.join(this_dir, "detectron2", "layers", "csrc")
main_source = path.join(extensions_dir, "vision.cpp")
sources = glob.glob(path.join(extensions_dir, "**", "*.cpp"))
is_rocm_pytorch = False
if torch_ver >= [1, 5]:
from torch.utils.cpp_extension import ROCM_HOME
is_rocm_pytorch = (
True if ((torch.version.hip is not None) and (ROCM_HOME is not None)) else False
)
if is_rocm_pytorch:
hipify_python.hipify(
project_directory=this_dir,
output_directory=this_dir,
includes="/detectron2/layers/csrc/*",
show_detailed=True,
is_pytorch_extension=True,
)
# Current version of hipify function in pytorch creates an intermediate directory
# named "hip" at the same level of the path hierarchy if a "cuda" directory exists,
# or modifying the hierarchy, if it doesn't. Once pytorch supports
# "same directory" hipification (https://github.com/pytorch/pytorch/pull/40523),
# the source_cuda will be set similarly in both cuda and hip paths, and the explicit
# header file copy (below) will not be needed.
source_cuda = glob.glob(path.join(extensions_dir, "**", "hip", "*.hip")) + glob.glob(
path.join(extensions_dir, "hip", "*.hip")
)
shutil.copy(
"detectron2/layers/csrc/box_iou_rotated/box_iou_rotated_utils.h",
"detectron2/layers/csrc/box_iou_rotated/hip/box_iou_rotated_utils.h",
)
shutil.copy(
"detectron2/layers/csrc/deformable/deform_conv.h",
"detectron2/layers/csrc/deformable/hip/deform_conv.h",
)
else:
source_cuda = glob.glob(path.join(extensions_dir, "**", "*.cu")) + glob.glob(
path.join(extensions_dir, "*.cu")
)
sources = [main_source] + sources
extension = CppExtension
extra_compile_args = {"cxx": []}
define_macros = []
if (torch.cuda.is_available() and ((CUDA_HOME is not None) or is_rocm_pytorch)) or os.getenv(
"FORCE_CUDA", "0"
) == "1":
extension = CUDAExtension
sources += source_cuda
if not is_rocm_pytorch:
define_macros += [("WITH_CUDA", None)]
extra_compile_args["nvcc"] = [
"-O3",
"-DCUDA_HAS_FP16=1",
"-D__CUDA_NO_HALF_OPERATORS__",
"-D__CUDA_NO_HALF_CONVERSIONS__",
"-D__CUDA_NO_HALF2_OPERATORS__",
]
else:
define_macros += [("WITH_HIP", None)]
extra_compile_args["nvcc"] = []
# It's better if pytorch can do this by default ..
CC = os.environ.get("CC", None)
if CC is not None:
extra_compile_args["nvcc"].append("-ccbin={}".format(CC))
include_dirs = [extensions_dir]
ext_modules = [
extension(
"detectron2._C",
sources,
include_dirs=include_dirs,
define_macros=define_macros,
extra_compile_args=extra_compile_args,
)
]
return ext_modules
def get_model_zoo_configs() -> List[str]:
"""
Return a list of configs to include in package for model zoo. Copy over these configs inside
detectron2/model_zoo.
"""
# Use absolute paths while symlinking.
source_configs_dir = path.join(path.dirname(path.realpath(__file__)), "configs")
destination = path.join(
path.dirname(path.realpath(__file__)), "detectron2", "model_zoo", "configs"
)
# Symlink the config directory inside package to have a cleaner pip install.
# Remove stale symlink/directory from a previous build.
if path.exists(source_configs_dir):
if path.islink(destination):
os.unlink(destination)
elif path.isdir(destination):
shutil.rmtree(destination)
if not path.exists(destination):
try:
os.symlink(source_configs_dir, destination)
except OSError:
# Fall back to copying if symlink fails: ex. on Windows.
shutil.copytree(source_configs_dir, destination)
config_paths = glob.glob("configs/**/*.yaml", recursive=True)
return config_paths
# For projects that are relative small and provide features that are very close
# to detectron2's core functionalities, we install them under detectron2.projects
PROJECTS = {
"detectron2.projects.point_rend": "projects/PointRend/point_rend",
"detectron2.projects.deeplab": "projects/DeepLab/deeplab",
}
setup(
name="detectron2",
version=get_version(),
author="FAIR",
url="https://github.com/facebookresearch/detectron2",
description="Detectron2 is FAIR's next-generation research "
"platform for object detection and segmentation.",
packages=find_packages(exclude=("configs", "tests*")) + list(PROJECTS.keys()),
package_dir=PROJECTS,
package_data={"detectron2.model_zoo": get_model_zoo_configs()},
python_requires=">=3.6",
install_requires=[
"termcolor>=1.1",
"Pillow>=7.1", # or use pillow-simd for better performance
"yacs>=0.1.6",
"tabulate",
"cloudpickle",
"matplotlib",
"mock",
"tqdm>4.29.0",
"tensorboard",
"fvcore>=0.1.1",
"pycocotools>=2.0.2",
"future", # used by caffe2
"pydot", # used to save caffe2 SVGs
],
extras_require={
"all": ["shapely", "psutil"],
"dev": [
"flake8==3.8.1",
"isort==4.3.21",
"black @ git+https://github.com/psf/black@673327449f86fce558adde153bb6cbe54bfebad2",
"flake8-bugbear",
"flake8-comprehensions",
],
},
ext_modules=get_extensions(),
cmdclass={"build_ext": torch.utils.cpp_extension.BuildExtension},
)