-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomputations.py
108 lines (90 loc) · 3 KB
/
computations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import numpy as np
from scipy.optimize import brentq
import torch
def lstsq_update(prior_estimate, prior_gram, z, y):
"""Recursive least squares update for y = z@theta + w
"""
posterior_gram = prior_gram + z[:, None]@z[None, :]
combination = prior_gram@prior_estimate + y*z
posterior_estimate = np.linalg.solve(posterior_gram, combination)
return posterior_estimate, posterior_gram
def solve_D_optimal(M_inv, B, v, gamma):
"""Compute the one-step-ahead optimal design for the estimation of A:
maximize log det (M + v v^T)
with v = Ax + Bu and u of norm gamma
:param M: Current Gram matrix;
:type M: size d x d numpy array
:param A: Dynamics matrix.
:type A: size d x d numpy array
:param B: Control matrix.
:type B: size d x m numpy array
:param x: Current state.
:type x: size d numpy array
:param gamma: gamma**2 is the maximal power.
:type gamma: float
:return: optimal input
:rtype: size m numpy array
"""
Q = - B.T @ M_inv @ B
b = B.T @ M_inv @ v
# print(f'Q = {Q}')
# print(f'b = {b}')
u = minimize_quadratic_sphere(Q, b, gamma)
return u
def minimize_quadratic_sphere(Q, b, gamma):
"""Minimize the following quadratic function phi over the sphere of radius gamma:
phi(x) = <x, Qx> - 2<x, b>
:return: minimizer
:rtype: size m numpy array
"""
eigenvalues, eigenvectors = np.linalg.eig(Q)
indices = eigenvalues.argsort()
eigenvalues = eigenvalues[indices]
eigenvectors = eigenvectors[:, indices]
if not b.any():
return gamma*(eigenvectors[:, 0])
beta = eigenvectors.T @ b
mu_l = -eigenvalues[0] + 0.9*(1/gamma)*abs(beta[0])
mu_u = -eigenvalues[0] + 1.1*(1/gamma)*(np.linalg.norm(b))
def func(mu):
return (beta**2 / (eigenvalues+mu)**2).sum() - gamma**2
mu = brentq(
func,
mu_l,
mu_u,
)
c = beta / (eigenvalues + mu)
u = eigenvectors @ c
u = np.real(u)
return u
def compute_gradient(model, output, **grad_kwargs):
tensor_gradients = torch.autograd.grad(
output,
model.parameters(),
**grad_kwargs
)
derivatives = []
for index, tensor in enumerate(tensor_gradients):
if tensor is None:
tensor = torch.zeros_like(list(model.parameters())[index])
derivatives.append(tensor.view(-1, 1))
gradient = torch.cat(derivatives).squeeze()
return gradient
def jacobian(model, z, **grad_kwargs):
y = model(z)
batch_size, d = y.shape
assert batch_size == 1
q = sum(parameter.numel() for parameter in model.parameters())
J = torch.zeros(d, q, dtype=torch.float)
for i in range(d):
tensor_gradients = torch.autograd.grad(
y[:, i],
model.parameters(),
**grad_kwargs
)
derivatives = []
for tensor in tensor_gradients:
derivatives.append(tensor.view(-1, 1))
gradient = torch.cat(derivatives).squeeze()
J[i] = gradient
return J