-
Notifications
You must be signed in to change notification settings - Fork 1.8k
/
Copy pathnnUNetTrainer.py
1382 lines (1201 loc) · 70.6 KB
/
nnUNetTrainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import inspect
import multiprocessing
import os
import shutil
import sys
import warnings
from copy import deepcopy
from datetime import datetime
from time import time, sleep
from typing import Tuple, Union, List
import numpy as np
import torch
from batchgenerators.dataloading.multi_threaded_augmenter import MultiThreadedAugmenter
from batchgenerators.dataloading.nondet_multi_threaded_augmenter import NonDetMultiThreadedAugmenter
from batchgenerators.dataloading.single_threaded_augmenter import SingleThreadedAugmenter
from batchgenerators.utilities.file_and_folder_operations import join, load_json, isfile, save_json, maybe_mkdir_p
from batchgeneratorsv2.helpers.scalar_type import RandomScalar
from batchgeneratorsv2.transforms.base.basic_transform import BasicTransform
from batchgeneratorsv2.transforms.intensity.brightness import MultiplicativeBrightnessTransform
from batchgeneratorsv2.transforms.intensity.contrast import ContrastTransform, BGContrast
from batchgeneratorsv2.transforms.intensity.gamma import GammaTransform
from batchgeneratorsv2.transforms.intensity.gaussian_noise import GaussianNoiseTransform
from batchgeneratorsv2.transforms.nnunet.random_binary_operator import ApplyRandomBinaryOperatorTransform
from batchgeneratorsv2.transforms.nnunet.remove_connected_components import \
RemoveRandomConnectedComponentFromOneHotEncodingTransform
from batchgeneratorsv2.transforms.nnunet.seg_to_onehot import MoveSegAsOneHotToDataTransform
from batchgeneratorsv2.transforms.noise.gaussian_blur import GaussianBlurTransform
from batchgeneratorsv2.transforms.spatial.low_resolution import SimulateLowResolutionTransform
from batchgeneratorsv2.transforms.spatial.mirroring import MirrorTransform
from batchgeneratorsv2.transforms.spatial.spatial import SpatialTransform
from batchgeneratorsv2.transforms.utils.compose import ComposeTransforms
from batchgeneratorsv2.transforms.utils.deep_supervision_downsampling import DownsampleSegForDSTransform
from batchgeneratorsv2.transforms.utils.nnunet_masking import MaskImageTransform
from batchgeneratorsv2.transforms.utils.pseudo2d import Convert3DTo2DTransform, Convert2DTo3DTransform
from batchgeneratorsv2.transforms.utils.random import RandomTransform
from batchgeneratorsv2.transforms.utils.remove_label import RemoveLabelTansform
from batchgeneratorsv2.transforms.utils.seg_to_regions import ConvertSegmentationToRegionsTransform
from torch import autocast, nn
from torch import distributed as dist
from torch._dynamo import OptimizedModule
from torch.cuda import device_count
from torch.cuda.amp import GradScaler
from torch.nn.parallel import DistributedDataParallel as DDP
from nnunetv2.configuration import ANISO_THRESHOLD, default_num_processes
from nnunetv2.evaluation.evaluate_predictions import compute_metrics_on_folder
from nnunetv2.inference.export_prediction import export_prediction_from_logits, resample_and_save
from nnunetv2.inference.predict_from_raw_data import nnUNetPredictor
from nnunetv2.inference.sliding_window_prediction import compute_gaussian
from nnunetv2.paths import nnUNet_preprocessed, nnUNet_results
from nnunetv2.training.data_augmentation.compute_initial_patch_size import get_patch_size
from nnunetv2.training.dataloading.data_loader_2d import nnUNetDataLoader2D
from nnunetv2.training.dataloading.data_loader_3d import nnUNetDataLoader3D
from nnunetv2.training.dataloading.nnunet_dataset import nnUNetDataset
from nnunetv2.training.dataloading.utils import get_case_identifiers, unpack_dataset
from nnunetv2.training.logging.nnunet_logger import nnUNetLogger
from nnunetv2.training.loss.compound_losses import DC_and_CE_loss, DC_and_BCE_loss
from nnunetv2.training.loss.deep_supervision import DeepSupervisionWrapper
from nnunetv2.training.loss.dice import get_tp_fp_fn_tn, MemoryEfficientSoftDiceLoss
from nnunetv2.training.lr_scheduler.polylr import PolyLRScheduler
from nnunetv2.utilities.collate_outputs import collate_outputs
from nnunetv2.utilities.crossval_split import generate_crossval_split
from nnunetv2.utilities.default_n_proc_DA import get_allowed_n_proc_DA
from nnunetv2.utilities.file_path_utilities import check_workers_alive_and_busy
from nnunetv2.utilities.get_network_from_plans import get_network_from_plans
from nnunetv2.utilities.helpers import empty_cache, dummy_context
from nnunetv2.utilities.label_handling.label_handling import convert_labelmap_to_one_hot, determine_num_input_channels
from nnunetv2.utilities.plans_handling.plans_handler import PlansManager
class nnUNetTrainer(object):
def __init__(self, plans: dict, configuration: str, fold: int, dataset_json: dict, unpack_dataset: bool = True,
device: torch.device = torch.device('cuda')):
# From https://grugbrain.dev/. Worth a read ya big brains ;-)
# apex predator of grug is complexity
# complexity bad
# say again:
# complexity very bad
# you say now:
# complexity very, very bad
# given choice between complexity or one on one against t-rex, grug take t-rex: at least grug see t-rex
# complexity is spirit demon that enter codebase through well-meaning but ultimately very clubbable non grug-brain developers and project managers who not fear complexity spirit demon or even know about sometime
# one day code base understandable and grug can get work done, everything good!
# next day impossible: complexity demon spirit has entered code and very dangerous situation!
# OK OK I am guilty. But I tried.
# https://www.osnews.com/images/comics/wtfm.jpg
# https://i.pinimg.com/originals/26/b2/50/26b250a738ea4abc7a5af4d42ad93af0.jpg
self.is_ddp = dist.is_available() and dist.is_initialized()
self.local_rank = 0 if not self.is_ddp else dist.get_rank()
self.device = device
# print what device we are using
if self.is_ddp: # implicitly it's clear that we use cuda in this case
print(f"I am local rank {self.local_rank}. {device_count()} GPUs are available. The world size is "
f"{dist.get_world_size()}."
f"Setting device to {self.device}")
self.device = torch.device(type='cuda', index=self.local_rank)
else:
if self.device.type == 'cuda':
# we might want to let the user pick this but for now please pick the correct GPU with CUDA_VISIBLE_DEVICES=X
self.device = torch.device(type='cuda', index=0)
print(f"Using device: {self.device}")
# loading and saving this class for continuing from checkpoint should not happen based on pickling. This
# would also pickle the network etc. Bad, bad. Instead we just reinstantiate and then load the checkpoint we
# need. So let's save the init args
self.my_init_kwargs = {}
for k in inspect.signature(self.__init__).parameters.keys():
self.my_init_kwargs[k] = locals()[k]
### Saving all the init args into class variables for later access
self.plans_manager = PlansManager(plans)
self.configuration_manager = self.plans_manager.get_configuration(configuration)
self.configuration_name = configuration
self.dataset_json = dataset_json
self.fold = fold
self.unpack_dataset = unpack_dataset
### Setting all the folder names. We need to make sure things don't crash in case we are just running
# inference and some of the folders may not be defined!
self.preprocessed_dataset_folder_base = join(nnUNet_preprocessed, self.plans_manager.dataset_name) \
if nnUNet_preprocessed is not None else None
self.output_folder_base = join(nnUNet_results, self.plans_manager.dataset_name,
self.__class__.__name__ + '__' + self.plans_manager.plans_name + "__" + configuration) \
if nnUNet_results is not None else None
self.output_folder = join(self.output_folder_base, f'fold_{fold}')
self.preprocessed_dataset_folder = join(self.preprocessed_dataset_folder_base,
self.configuration_manager.data_identifier)
# unlike the previous nnunet folder_with_segs_from_previous_stage is now part of the plans. For now it has to
# be a different configuration in the same plans
# IMPORTANT! the mapping must be bijective, so lowres must point to fullres and vice versa (using
# "previous_stage" and "next_stage"). Otherwise it won't work!
self.is_cascaded = self.configuration_manager.previous_stage_name is not None
self.folder_with_segs_from_previous_stage = \
join(nnUNet_results, self.plans_manager.dataset_name,
self.__class__.__name__ + '__' + self.plans_manager.plans_name + "__" +
self.configuration_manager.previous_stage_name, 'predicted_next_stage', self.configuration_name) \
if self.is_cascaded else None
### Some hyperparameters for you to fiddle with
self.initial_lr = 1e-2
self.weight_decay = 3e-5
self.oversample_foreground_percent = 0.33
self.num_iterations_per_epoch = 250
self.num_val_iterations_per_epoch = 50
self.num_epochs = 1000
self.current_epoch = 0
self.enable_deep_supervision = True
### Dealing with labels/regions
self.label_manager = self.plans_manager.get_label_manager(dataset_json)
# labels can either be a list of int (regular training) or a list of tuples of int (region-based training)
# needed for predictions. We do sigmoid in case of (overlapping) regions
self.num_input_channels = None # -> self.initialize()
self.network = None # -> self.build_network_architecture()
self.optimizer = self.lr_scheduler = None # -> self.initialize
self.grad_scaler = GradScaler() if self.device.type == 'cuda' else None
self.loss = None # -> self.initialize
### Simple logging. Don't take that away from me!
# initialize log file. This is just our log for the print statements etc. Not to be confused with lightning
# logging
timestamp = datetime.now()
maybe_mkdir_p(self.output_folder)
self.log_file = join(self.output_folder, "training_log_%d_%d_%d_%02.0d_%02.0d_%02.0d.txt" %
(timestamp.year, timestamp.month, timestamp.day, timestamp.hour, timestamp.minute,
timestamp.second))
self.logger = nnUNetLogger()
### placeholders
self.dataloader_train = self.dataloader_val = None # see on_train_start
### initializing stuff for remembering things and such
self._best_ema = None
### inference things
self.inference_allowed_mirroring_axes = None # this variable is set in
# self.configure_rotation_dummyDA_mirroring_and_inital_patch_size and will be saved in checkpoints
### checkpoint saving stuff
self.save_every = 50
self.disable_checkpointing = False
## DDP batch size and oversampling can differ between workers and needs adaptation
# we need to change the batch size in DDP because we don't use any of those distributed samplers
self._set_batch_size_and_oversample()
self.was_initialized = False
self.print_to_log_file("\n#######################################################################\n"
"Please cite the following paper when using nnU-Net:\n"
"Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J., & Maier-Hein, K. H. (2021). "
"nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. "
"Nature methods, 18(2), 203-211.\n"
"#######################################################################\n",
also_print_to_console=True, add_timestamp=False)
def initialize(self):
if not self.was_initialized:
self.num_input_channels = determine_num_input_channels(self.plans_manager, self.configuration_manager,
self.dataset_json)
self.network = self.build_network_architecture(
self.configuration_manager.network_arch_class_name,
self.configuration_manager.network_arch_init_kwargs,
self.configuration_manager.network_arch_init_kwargs_req_import,
self.num_input_channels,
self.label_manager.num_segmentation_heads,
self.enable_deep_supervision
).to(self.device)
# compile network for free speedup
if self._do_i_compile():
self.print_to_log_file('Using torch.compile...')
self.network = torch.compile(self.network)
self.optimizer, self.lr_scheduler = self.configure_optimizers()
# if ddp, wrap in DDP wrapper
if self.is_ddp:
self.network = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.network)
self.network = DDP(self.network, device_ids=[self.local_rank])
self.loss = self._build_loss()
# torch 2.2.2 crashes upon compiling CE loss
# if self._do_i_compile():
# self.loss = torch.compile(self.loss)
self.was_initialized = True
else:
raise RuntimeError("You have called self.initialize even though the trainer was already initialized. "
"That should not happen.")
def _do_i_compile(self):
# new default: compile is enabled!
# compile does not work on mps
if self.device == torch.device('mps'):
if 'nnUNet_compile' in os.environ.keys() and os.environ['nnUNet_compile'].lower() in ('true', '1', 't'):
self.print_to_log_file("INFO: torch.compile disabled because of unsupported mps device")
return False
# CPU compile crashes for 2D models. Not sure if we even want to support CPU compile!? Better disable
if self.device == torch.device('cpu'):
if 'nnUNet_compile' in os.environ.keys() and os.environ['nnUNet_compile'].lower() in ('true', '1', 't'):
self.print_to_log_file("INFO: torch.compile disabled because device is CPU")
return False
# default torch.compile doesn't work on windows because there are apparently no triton wheels for it
# https://discuss.pytorch.org/t/windows-support-timeline-for-torch-compile/182268/2
if os.name == 'nt':
if 'nnUNet_compile' in os.environ.keys() and os.environ['nnUNet_compile'].lower() in ('true', '1', 't'):
self.print_to_log_file("INFO: torch.compile disabled because Windows is not natively supported. If "
"you know what you are doing, check https://discuss.pytorch.org/t/windows-support-timeline-for-torch-compile/182268/2")
return False
if 'nnUNet_compile' not in os.environ.keys():
return True
else:
return os.environ['nnUNet_compile'].lower() in ('true', '1', 't')
def _save_debug_information(self):
# saving some debug information
if self.local_rank == 0:
dct = {}
for k in self.__dir__():
if not k.startswith("__"):
if not callable(getattr(self, k)) or k in ['loss', ]:
dct[k] = str(getattr(self, k))
elif k in ['network', ]:
dct[k] = str(getattr(self, k).__class__.__name__)
else:
# print(k)
pass
if k in ['dataloader_train', 'dataloader_val']:
if hasattr(getattr(self, k), 'generator'):
dct[k + '.generator'] = str(getattr(self, k).generator)
if hasattr(getattr(self, k), 'num_processes'):
dct[k + '.num_processes'] = str(getattr(self, k).num_processes)
if hasattr(getattr(self, k), 'transform'):
dct[k + '.transform'] = str(getattr(self, k).transform)
import subprocess
hostname = subprocess.getoutput(['hostname'])
dct['hostname'] = hostname
torch_version = torch.__version__
if self.device.type == 'cuda':
gpu_name = torch.cuda.get_device_name()
dct['gpu_name'] = gpu_name
cudnn_version = torch.backends.cudnn.version()
else:
cudnn_version = 'None'
dct['device'] = str(self.device)
dct['torch_version'] = torch_version
dct['cudnn_version'] = cudnn_version
save_json(dct, join(self.output_folder, "debug.json"))
@staticmethod
def build_network_architecture(architecture_class_name: str,
arch_init_kwargs: dict,
arch_init_kwargs_req_import: Union[List[str], Tuple[str, ...]],
num_input_channels: int,
num_output_channels: int,
enable_deep_supervision: bool = True) -> nn.Module:
"""
This is where you build the architecture according to the plans. There is no obligation to use
get_network_from_plans, this is just a utility we use for the nnU-Net default architectures. You can do what
you want. Even ignore the plans and just return something static (as long as it can process the requested
patch size)
but don't bug us with your bugs arising from fiddling with this :-P
This is the function that is called in inference as well! This is needed so that all network architecture
variants can be loaded at inference time (inference will use the same nnUNetTrainer that was used for
training, so if you change the network architecture during training by deriving a new trainer class then
inference will know about it).
If you need to know how many segmentation outputs your custom architecture needs to have, use the following snippet:
> label_manager = plans_manager.get_label_manager(dataset_json)
> label_manager.num_segmentation_heads
(why so complicated? -> We can have either classical training (classes) or regions. If we have regions,
the number of outputs is != the number of classes. Also there is the ignore label for which no output
should be generated. label_manager takes care of all that for you.)
"""
return get_network_from_plans(
architecture_class_name,
arch_init_kwargs,
arch_init_kwargs_req_import,
num_input_channels,
num_output_channels,
allow_init=True,
deep_supervision=enable_deep_supervision)
def _get_deep_supervision_scales(self):
if self.enable_deep_supervision:
deep_supervision_scales = list(list(i) for i in 1 / np.cumprod(np.vstack(
self.configuration_manager.pool_op_kernel_sizes), axis=0))[:-1]
else:
deep_supervision_scales = None # for train and val_transforms
return deep_supervision_scales
def _set_batch_size_and_oversample(self):
if not self.is_ddp:
# set batch size to what the plan says, leave oversample untouched
self.batch_size = self.configuration_manager.batch_size
else:
# batch size is distributed over DDP workers and we need to change oversample_percent for each worker
world_size = dist.get_world_size()
my_rank = dist.get_rank()
global_batch_size = self.configuration_manager.batch_size
assert global_batch_size >= world_size, 'Cannot run DDP if the batch size is smaller than the number of ' \
'GPUs... Duh.'
batch_size_per_GPU = [global_batch_size // world_size] * world_size
batch_size_per_GPU = [batch_size_per_GPU[i] + 1
if (batch_size_per_GPU[i] * world_size + i) < global_batch_size
else batch_size_per_GPU[i]
for i in range(len(batch_size_per_GPU))]
assert sum(batch_size_per_GPU) == global_batch_size
sample_id_low = 0 if my_rank == 0 else np.sum(batch_size_per_GPU[:my_rank])
sample_id_high = np.sum(batch_size_per_GPU[:my_rank + 1])
# This is how oversampling is determined in DataLoader
# round(self.batch_size * (1 - self.oversample_foreground_percent))
# We need to use the same scheme here because an oversample of 0.33 with a batch size of 2 will be rounded
# to an oversample of 0.5 (1 sample random, one oversampled). This may get lost if we just numerically
# compute oversample
oversample = [True if not i < round(global_batch_size * (1 - self.oversample_foreground_percent)) else False
for i in range(global_batch_size)]
if sample_id_high / global_batch_size < (1 - self.oversample_foreground_percent):
oversample_percent = 0.0
elif sample_id_low / global_batch_size > (1 - self.oversample_foreground_percent):
oversample_percent = 1.0
else:
oversample_percent = sum(oversample[sample_id_low:sample_id_high]) / batch_size_per_GPU[my_rank]
print("worker", my_rank, "oversample", oversample_percent)
print("worker", my_rank, "batch_size", batch_size_per_GPU[my_rank])
self.batch_size = batch_size_per_GPU[my_rank]
self.oversample_foreground_percent = oversample_percent
def _build_loss(self):
if self.label_manager.has_regions:
loss = DC_and_BCE_loss({},
{'batch_dice': self.configuration_manager.batch_dice,
'do_bg': True, 'smooth': 1e-5, 'ddp': self.is_ddp},
use_ignore_label=self.label_manager.ignore_label is not None,
dice_class=MemoryEfficientSoftDiceLoss)
else:
loss = DC_and_CE_loss({'batch_dice': self.configuration_manager.batch_dice,
'smooth': 1e-5, 'do_bg': False, 'ddp': self.is_ddp}, {}, weight_ce=1, weight_dice=1,
ignore_label=self.label_manager.ignore_label, dice_class=MemoryEfficientSoftDiceLoss)
if self._do_i_compile():
loss.dc = torch.compile(loss.dc)
# we give each output a weight which decreases exponentially (division by 2) as the resolution decreases
# this gives higher resolution outputs more weight in the loss
if self.enable_deep_supervision:
deep_supervision_scales = self._get_deep_supervision_scales()
weights = np.array([1 / (2 ** i) for i in range(len(deep_supervision_scales))])
if self.is_ddp and not self._do_i_compile():
# very strange and stupid interaction. DDP crashes and complains about unused parameters due to
# weights[-1] = 0. Interestingly this crash doesn't happen with torch.compile enabled. Strange stuff.
# Anywho, the simple fix is to set a very low weight to this.
weights[-1] = 1e-6
else:
weights[-1] = 0
# we don't use the lowest 2 outputs. Normalize weights so that they sum to 1
weights = weights / weights.sum()
# now wrap the loss
loss = DeepSupervisionWrapper(loss, weights)
return loss
def configure_rotation_dummyDA_mirroring_and_inital_patch_size(self):
"""
This function is stupid and certainly one of the weakest spots of this implementation. Not entirely sure how we can fix it.
"""
patch_size = self.configuration_manager.patch_size
dim = len(patch_size)
# todo rotation should be defined dynamically based on patch size (more isotropic patch sizes = more rotation)
if dim == 2:
do_dummy_2d_data_aug = False
# todo revisit this parametrization
if max(patch_size) / min(patch_size) > 1.5:
rotation_for_DA = (-15. / 360 * 2. * np.pi, 15. / 360 * 2. * np.pi)
else:
rotation_for_DA = (-180. / 360 * 2. * np.pi, 180. / 360 * 2. * np.pi)
mirror_axes = (0, 1)
elif dim == 3:
# todo this is not ideal. We could also have patch_size (64, 16, 128) in which case a full 180deg 2d rot would be bad
# order of the axes is determined by spacing, not image size
do_dummy_2d_data_aug = (max(patch_size) / patch_size[0]) > ANISO_THRESHOLD
if do_dummy_2d_data_aug:
# why do we rotate 180 deg here all the time? We should also restrict it
rotation_for_DA = (-180. / 360 * 2. * np.pi, 180. / 360 * 2. * np.pi)
else:
rotation_for_DA = (-30. / 360 * 2. * np.pi, 30. / 360 * 2. * np.pi)
mirror_axes = (0, 1, 2)
else:
raise RuntimeError()
# todo this function is stupid. It doesn't even use the correct scale range (we keep things as they were in the
# old nnunet for now)
initial_patch_size = get_patch_size(patch_size[-dim:],
rotation_for_DA,
rotation_for_DA,
rotation_for_DA,
(0.85, 1.25))
if do_dummy_2d_data_aug:
initial_patch_size[0] = patch_size[0]
self.print_to_log_file(f'do_dummy_2d_data_aug: {do_dummy_2d_data_aug}')
self.inference_allowed_mirroring_axes = mirror_axes
return rotation_for_DA, do_dummy_2d_data_aug, initial_patch_size, mirror_axes
def print_to_log_file(self, *args, also_print_to_console=True, add_timestamp=True):
if self.local_rank == 0:
timestamp = time()
dt_object = datetime.fromtimestamp(timestamp)
if add_timestamp:
args = (f"{dt_object}:", *args)
successful = False
max_attempts = 5
ctr = 0
while not successful and ctr < max_attempts:
try:
with open(self.log_file, 'a+') as f:
for a in args:
f.write(str(a))
f.write(" ")
f.write("\n")
successful = True
except IOError:
print(f"{datetime.fromtimestamp(timestamp)}: failed to log: ", sys.exc_info())
sleep(0.5)
ctr += 1
if also_print_to_console:
print(*args)
elif also_print_to_console:
print(*args)
def print_plans(self):
if self.local_rank == 0:
dct = deepcopy(self.plans_manager.plans)
del dct['configurations']
self.print_to_log_file(f"\nThis is the configuration used by this "
f"training:\nConfiguration name: {self.configuration_name}\n",
self.configuration_manager, '\n', add_timestamp=False)
self.print_to_log_file('These are the global plan.json settings:\n', dct, '\n', add_timestamp=False)
def configure_optimizers(self):
optimizer = torch.optim.SGD(self.network.parameters(), self.initial_lr, weight_decay=self.weight_decay,
momentum=0.99, nesterov=True)
lr_scheduler = PolyLRScheduler(optimizer, self.initial_lr, self.num_epochs)
return optimizer, lr_scheduler
def plot_network_architecture(self):
if self._do_i_compile():
self.print_to_log_file("Unable to plot network architecture: nnUNet_compile is enabled!")
return
if self.local_rank == 0:
try:
# raise NotImplementedError('hiddenlayer no longer works and we do not have a viable alternative :-(')
# pip install git+https://github.com/saugatkandel/hiddenlayer.git
# from torchviz import make_dot
# # not viable.
# make_dot(tuple(self.network(torch.rand((1, self.num_input_channels,
# *self.configuration_manager.patch_size),
# device=self.device)))).render(
# join(self.output_folder, "network_architecture.pdf"), format='pdf')
# self.optimizer.zero_grad()
# broken.
import hiddenlayer as hl
g = hl.build_graph(self.network,
torch.rand((1, self.num_input_channels,
*self.configuration_manager.patch_size),
device=self.device),
transforms=None)
g.save(join(self.output_folder, "network_architecture.pdf"))
del g
except Exception as e:
self.print_to_log_file("Unable to plot network architecture:")
self.print_to_log_file(e)
# self.print_to_log_file("\nprinting the network instead:\n")
# self.print_to_log_file(self.network)
# self.print_to_log_file("\n")
finally:
empty_cache(self.device)
def do_split(self):
"""
The default split is a 5 fold CV on all available training cases. nnU-Net will create a split (it is seeded,
so always the same) and save it as splits_final.json file in the preprocessed data directory.
Sometimes you may want to create your own split for various reasons. For this you will need to create your own
splits_final.json file. If this file is present, nnU-Net is going to use it and whatever splits are defined in
it. You can create as many splits in this file as you want. Note that if you define only 4 splits (fold 0-3)
and then set fold=4 when training (that would be the fifth split), nnU-Net will print a warning and proceed to
use a random 80:20 data split.
:return:
"""
if self.fold == "all":
# if fold==all then we use all images for training and validation
case_identifiers = get_case_identifiers(self.preprocessed_dataset_folder)
tr_keys = case_identifiers
val_keys = tr_keys
else:
splits_file = join(self.preprocessed_dataset_folder_base, "splits_final.json")
dataset = nnUNetDataset(self.preprocessed_dataset_folder, case_identifiers=None,
num_images_properties_loading_threshold=0,
folder_with_segs_from_previous_stage=self.folder_with_segs_from_previous_stage)
# if the split file does not exist we need to create it
if not isfile(splits_file):
self.print_to_log_file("Creating new 5-fold cross-validation split...")
all_keys_sorted = list(np.sort(list(dataset.keys())))
splits = generate_crossval_split(all_keys_sorted, seed=12345, n_splits=5)
save_json(splits, splits_file)
else:
self.print_to_log_file("Using splits from existing split file:", splits_file)
splits = load_json(splits_file)
self.print_to_log_file(f"The split file contains {len(splits)} splits.")
self.print_to_log_file("Desired fold for training: %d" % self.fold)
if self.fold < len(splits):
tr_keys = splits[self.fold]['train']
val_keys = splits[self.fold]['val']
self.print_to_log_file("This split has %d training and %d validation cases."
% (len(tr_keys), len(val_keys)))
else:
self.print_to_log_file("INFO: You requested fold %d for training but splits "
"contain only %d folds. I am now creating a "
"random (but seeded) 80:20 split!" % (self.fold, len(splits)))
# if we request a fold that is not in the split file, create a random 80:20 split
rnd = np.random.RandomState(seed=12345 + self.fold)
keys = np.sort(list(dataset.keys()))
idx_tr = rnd.choice(len(keys), int(len(keys) * 0.8), replace=False)
idx_val = [i for i in range(len(keys)) if i not in idx_tr]
tr_keys = [keys[i] for i in idx_tr]
val_keys = [keys[i] for i in idx_val]
self.print_to_log_file("This random 80:20 split has %d training and %d validation cases."
% (len(tr_keys), len(val_keys)))
if any([i in val_keys for i in tr_keys]):
self.print_to_log_file('WARNING: Some validation cases are also in the training set. Please check the '
'splits.json or ignore if this is intentional.')
return tr_keys, val_keys
def get_tr_and_val_datasets(self):
# create dataset split
tr_keys, val_keys = self.do_split()
# load the datasets for training and validation. Note that we always draw random samples so we really don't
# care about distributing training cases across GPUs.
dataset_tr = nnUNetDataset(self.preprocessed_dataset_folder, tr_keys,
folder_with_segs_from_previous_stage=self.folder_with_segs_from_previous_stage,
num_images_properties_loading_threshold=0)
dataset_val = nnUNetDataset(self.preprocessed_dataset_folder, val_keys,
folder_with_segs_from_previous_stage=self.folder_with_segs_from_previous_stage,
num_images_properties_loading_threshold=0)
return dataset_tr, dataset_val
def get_dataloaders(self):
patch_size = self.configuration_manager.patch_size
dim = len(patch_size)
# needed for deep supervision: how much do we need to downscale the segmentation targets for the different
# outputs?
deep_supervision_scales = self._get_deep_supervision_scales()
(
rotation_for_DA,
do_dummy_2d_data_aug,
initial_patch_size,
mirror_axes,
) = self.configure_rotation_dummyDA_mirroring_and_inital_patch_size()
# training pipeline
tr_transforms = self.get_training_transforms(
patch_size, rotation_for_DA, deep_supervision_scales, mirror_axes, do_dummy_2d_data_aug,
use_mask_for_norm=self.configuration_manager.use_mask_for_norm,
is_cascaded=self.is_cascaded, foreground_labels=self.label_manager.foreground_labels,
regions=self.label_manager.foreground_regions if self.label_manager.has_regions else None,
ignore_label=self.label_manager.ignore_label)
# validation pipeline
val_transforms = self.get_validation_transforms(deep_supervision_scales,
is_cascaded=self.is_cascaded,
foreground_labels=self.label_manager.foreground_labels,
regions=self.label_manager.foreground_regions if
self.label_manager.has_regions else None,
ignore_label=self.label_manager.ignore_label)
dataset_tr, dataset_val = self.get_tr_and_val_datasets()
if dim == 2:
dl_tr = nnUNetDataLoader2D(dataset_tr, self.batch_size,
initial_patch_size,
self.configuration_manager.patch_size,
self.label_manager,
oversample_foreground_percent=self.oversample_foreground_percent,
sampling_probabilities=None, pad_sides=None, transforms=tr_transforms)
dl_val = nnUNetDataLoader2D(dataset_val, self.batch_size,
self.configuration_manager.patch_size,
self.configuration_manager.patch_size,
self.label_manager,
oversample_foreground_percent=self.oversample_foreground_percent,
sampling_probabilities=None, pad_sides=None, transforms=val_transforms)
else:
dl_tr = nnUNetDataLoader3D(dataset_tr, self.batch_size,
initial_patch_size,
self.configuration_manager.patch_size,
self.label_manager,
oversample_foreground_percent=self.oversample_foreground_percent,
sampling_probabilities=None, pad_sides=None, transforms=tr_transforms)
dl_val = nnUNetDataLoader3D(dataset_val, self.batch_size,
self.configuration_manager.patch_size,
self.configuration_manager.patch_size,
self.label_manager,
oversample_foreground_percent=self.oversample_foreground_percent,
sampling_probabilities=None, pad_sides=None, transforms=val_transforms)
allowed_num_processes = get_allowed_n_proc_DA()
if allowed_num_processes == 0:
mt_gen_train = SingleThreadedAugmenter(dl_tr, None)
mt_gen_val = SingleThreadedAugmenter(dl_val, None)
else:
mt_gen_train = NonDetMultiThreadedAugmenter(data_loader=dl_tr, transform=None,
num_processes=allowed_num_processes,
num_cached=max(6, allowed_num_processes // 2), seeds=None,
pin_memory=self.device.type == 'cuda', wait_time=0.002)
mt_gen_val = NonDetMultiThreadedAugmenter(data_loader=dl_val,
transform=None, num_processes=max(1, allowed_num_processes // 2),
num_cached=max(3, allowed_num_processes // 4), seeds=None,
pin_memory=self.device.type == 'cuda',
wait_time=0.002)
# # let's get this party started
_ = next(mt_gen_train)
_ = next(mt_gen_val)
return mt_gen_train, mt_gen_val
@staticmethod
def get_training_transforms(
patch_size: Union[np.ndarray, Tuple[int]],
rotation_for_DA: RandomScalar,
deep_supervision_scales: Union[List, Tuple, None],
mirror_axes: Tuple[int, ...],
do_dummy_2d_data_aug: bool,
use_mask_for_norm: List[bool] = None,
is_cascaded: bool = False,
foreground_labels: Union[Tuple[int, ...], List[int]] = None,
regions: List[Union[List[int], Tuple[int, ...], int]] = None,
ignore_label: int = None,
) -> BasicTransform:
transforms = []
if do_dummy_2d_data_aug:
ignore_axes = (0,)
transforms.append(Convert3DTo2DTransform())
patch_size_spatial = patch_size[1:]
else:
patch_size_spatial = patch_size
ignore_axes = None
transforms.append(
SpatialTransform(
patch_size_spatial, patch_center_dist_from_border=0, random_crop=False, p_elastic_deform=0,
p_rotation=0.2,
rotation=rotation_for_DA, p_scaling=0.2, scaling=(0.7, 1.4), p_synchronize_scaling_across_axes=1,
bg_style_seg_sampling=False # , mode_seg='nearest'
)
)
if do_dummy_2d_data_aug:
transforms.append(Convert2DTo3DTransform())
transforms.append(RandomTransform(
GaussianNoiseTransform(
noise_variance=(0, 0.1),
p_per_channel=1,
synchronize_channels=True
), apply_probability=0.1
))
transforms.append(RandomTransform(
GaussianBlurTransform(
blur_sigma=(0.5, 1.),
synchronize_channels=False,
synchronize_axes=False,
p_per_channel=0.5, benchmark=True
), apply_probability=0.2
))
transforms.append(RandomTransform(
MultiplicativeBrightnessTransform(
multiplier_range=BGContrast((0.75, 1.25)),
synchronize_channels=False,
p_per_channel=1
), apply_probability=0.15
))
transforms.append(RandomTransform(
ContrastTransform(
contrast_range=BGContrast((0.75, 1.25)),
preserve_range=True,
synchronize_channels=False,
p_per_channel=1
), apply_probability=0.15
))
transforms.append(RandomTransform(
SimulateLowResolutionTransform(
scale=(0.5, 1),
synchronize_channels=False,
synchronize_axes=True,
ignore_axes=ignore_axes,
allowed_channels=None,
p_per_channel=0.5
), apply_probability=0.25
))
transforms.append(RandomTransform(
GammaTransform(
gamma=BGContrast((0.7, 1.5)),
p_invert_image=1,
synchronize_channels=False,
p_per_channel=1,
p_retain_stats=1
), apply_probability=0.1
))
transforms.append(RandomTransform(
GammaTransform(
gamma=BGContrast((0.7, 1.5)),
p_invert_image=0,
synchronize_channels=False,
p_per_channel=1,
p_retain_stats=1
), apply_probability=0.3
))
if mirror_axes is not None and len(mirror_axes) > 0:
transforms.append(
MirrorTransform(
allowed_axes=mirror_axes
)
)
if use_mask_for_norm is not None and any(use_mask_for_norm):
transforms.append(MaskImageTransform(
apply_to_channels=[i for i in range(len(use_mask_for_norm)) if use_mask_for_norm[i]],
channel_idx_in_seg=0,
set_outside_to=0,
))
transforms.append(
RemoveLabelTansform(-1, 0)
)
if is_cascaded:
assert foreground_labels is not None, 'We need foreground_labels for cascade augmentations'
transforms.append(
MoveSegAsOneHotToDataTransform(
source_channel_idx=1,
all_labels=foreground_labels,
remove_channel_from_source=True
)
)
transforms.append(
RandomTransform(
ApplyRandomBinaryOperatorTransform(
channel_idx=list(range(-len(foreground_labels), 0)),
strel_size=(1, 8),
p_per_label=1
), apply_probability=0.4
)
)
transforms.append(
RandomTransform(
RemoveRandomConnectedComponentFromOneHotEncodingTransform(
channel_idx=list(range(-len(foreground_labels), 0)),
fill_with_other_class_p=0,
dont_do_if_covers_more_than_x_percent=0.15,
p_per_label=1
), apply_probability=0.2
)
)
if regions is not None:
# the ignore label must also be converted
transforms.append(
ConvertSegmentationToRegionsTransform(
regions=list(regions) + [ignore_label] if ignore_label is not None else regions,
channel_in_seg=0
)
)
if deep_supervision_scales is not None:
transforms.append(DownsampleSegForDSTransform(ds_scales=deep_supervision_scales))
return ComposeTransforms(transforms)
@staticmethod
def get_validation_transforms(
deep_supervision_scales: Union[List, Tuple, None],
is_cascaded: bool = False,
foreground_labels: Union[Tuple[int, ...], List[int]] = None,
regions: List[Union[List[int], Tuple[int, ...], int]] = None,
ignore_label: int = None,
) -> BasicTransform:
transforms = []
transforms.append(
RemoveLabelTansform(-1, 0)
)
if is_cascaded:
transforms.append(
MoveSegAsOneHotToDataTransform(
source_channel_idx=1,
all_labels=foreground_labels,
remove_channel_from_source=True
)
)
if regions is not None:
# the ignore label must also be converted
transforms.append(
ConvertSegmentationToRegionsTransform(
regions=list(regions) + [ignore_label] if ignore_label is not None else regions,
channel_in_seg=0
)
)
if deep_supervision_scales is not None:
transforms.append(DownsampleSegForDSTransform(ds_scales=deep_supervision_scales))
return ComposeTransforms(transforms)
def set_deep_supervision_enabled(self, enabled: bool):
"""
This function is specific for the default architecture in nnU-Net. If you change the architecture, there are
chances you need to change this as well!
"""
if self.is_ddp:
mod = self.network.module
else:
mod = self.network
if isinstance(mod, OptimizedModule):
mod = mod._orig_mod
mod.decoder.deep_supervision = enabled
def on_train_start(self):
# dataloaders must be instantiated here (instead of __init__) because they need access to the training data
# which may not be present when doing inference
self.dataloader_train, self.dataloader_val = self.get_dataloaders()
if not self.was_initialized:
self.initialize()
maybe_mkdir_p(self.output_folder)
# make sure deep supervision is on in the network
self.set_deep_supervision_enabled(self.enable_deep_supervision)
self.print_plans()
empty_cache(self.device)
# maybe unpack
if self.unpack_dataset and self.local_rank == 0:
self.print_to_log_file('unpacking dataset...')
unpack_dataset(self.preprocessed_dataset_folder, unpack_segmentation=True, overwrite_existing=False,
num_processes=max(1, round(get_allowed_n_proc_DA() // 2)), verify_npy=True)
self.print_to_log_file('unpacking done...')
if self.is_ddp:
dist.barrier()
# copy plans and dataset.json so that they can be used for restoring everything we need for inference
save_json(self.plans_manager.plans, join(self.output_folder_base, 'plans.json'), sort_keys=False)
save_json(self.dataset_json, join(self.output_folder_base, 'dataset.json'), sort_keys=False)
# we don't really need the fingerprint but its still handy to have it with the others
shutil.copy(join(self.preprocessed_dataset_folder_base, 'dataset_fingerprint.json'),
join(self.output_folder_base, 'dataset_fingerprint.json'))
# produces a pdf in output folder
self.plot_network_architecture()
self._save_debug_information()
# print(f"batch size: {self.batch_size}")
# print(f"oversample: {self.oversample_foreground_percent}")
def on_train_end(self):
# dirty hack because on_epoch_end increments the epoch counter and this is executed afterwards.
# This will lead to the wrong current epoch to be stored
self.current_epoch -= 1
self.save_checkpoint(join(self.output_folder, "checkpoint_final.pth"))
self.current_epoch += 1
# now we can delete latest
if self.local_rank == 0 and isfile(join(self.output_folder, "checkpoint_latest.pth")):
os.remove(join(self.output_folder, "checkpoint_latest.pth"))
# shut down dataloaders
old_stdout = sys.stdout
with open(os.devnull, 'w') as f:
sys.stdout = f
if self.dataloader_train is not None and \
isinstance(self.dataloader_train, (NonDetMultiThreadedAugmenter, MultiThreadedAugmenter)):
self.dataloader_train._finish()
if self.dataloader_val is not None and \
isinstance(self.dataloader_train, (NonDetMultiThreadedAugmenter, MultiThreadedAugmenter)):
self.dataloader_val._finish()
sys.stdout = old_stdout
empty_cache(self.device)
self.print_to_log_file("Training done.")
def on_train_epoch_start(self):
self.network.train()
self.lr_scheduler.step(self.current_epoch)
self.print_to_log_file('')
self.print_to_log_file(f'Epoch {self.current_epoch}')
self.print_to_log_file(
f"Current learning rate: {np.round(self.optimizer.param_groups[0]['lr'], decimals=5)}")
# lrs are the same for all workers so we don't need to gather them in case of DDP training
self.logger.log('lrs', self.optimizer.param_groups[0]['lr'], self.current_epoch)
def train_step(self, batch: dict) -> dict:
data = batch['data']
target = batch['target']
data = data.to(self.device, non_blocking=True)
if isinstance(target, list):
target = [i.to(self.device, non_blocking=True) for i in target]
else:
target = target.to(self.device, non_blocking=True)
self.optimizer.zero_grad(set_to_none=True)
# Autocast can be annoying
# If the device_type is 'cpu' then it's slow as heck and needs to be disabled.
# If the device_type is 'mps' then it will complain that mps is not implemented, even if enabled=False is set. Whyyyyyyy. (this is why we don't make use of enabled=False)
# So autocast will only be active if we have a cuda device.
with autocast(self.device.type, enabled=True) if self.device.type == 'cuda' else dummy_context():
output = self.network(data)
# del data
l = self.loss(output, target)
if self.grad_scaler is not None:
self.grad_scaler.scale(l).backward()
self.grad_scaler.unscale_(self.optimizer)