forked from uber-research/LaneGCN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
588 lines (496 loc) · 21.2 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
# Copyright (c) 2020 Uber Technologies, Inc.
# Please check LICENSE for more detail
import numpy as np
import torch
from torch.utils.data import Dataset
from scipy import sparse
import os
import copy
from argoverse.data_loading.argoverse_forecasting_loader import ArgoverseForecastingLoader
from argoverse.map_representation.map_api import ArgoverseMap
from skimage.transform import rotate
class ArgoDataset(Dataset):
def __init__(self, split, config, train=True):
self.config = config
self.train = train
if 'preprocess' in config and config['preprocess']:
if train:
self.split = np.load(self.config['preprocess_train'], allow_pickle=True)
else:
self.split = np.load(self.config['preprocess_val'], allow_pickle=True)
else:
self.avl = ArgoverseForecastingLoader(split)
self.avl.seq_list = sorted(self.avl.seq_list)
self.am = ArgoverseMap()
if 'raster' in config and config['raster']:
#TODO: DELETE
self.map_query = MapQuery(config['map_scale'])
def __getitem__(self, idx):
if 'preprocess' in self.config and self.config['preprocess']:
data = self.split[idx]
if self.train and self.config['rot_aug']:
new_data = dict()
for key in ['city', 'orig', 'gt_preds', 'has_preds']:
if key in data:
new_data[key] = ref_copy(data[key])
dt = np.random.rand() * self.config['rot_size']#np.pi * 2.0
theta = data['theta'] + dt
new_data['theta'] = theta
new_data['rot'] = np.asarray([
[np.cos(theta), -np.sin(theta)],
[np.sin(theta), np.cos(theta)]], np.float32)
rot = np.asarray([
[np.cos(-dt), -np.sin(-dt)],
[np.sin(-dt), np.cos(-dt)]], np.float32)
new_data['feats'] = data['feats'].copy()
new_data['feats'][:, :, :2] = np.matmul(new_data['feats'][:, :, :2], rot)
new_data['ctrs'] = np.matmul(data['ctrs'], rot)
graph = dict()
for key in ['num_nodes', 'turn', 'control', 'intersect', 'pre', 'suc', 'lane_idcs', 'left_pairs', 'right_pairs', 'left', 'right']:
graph[key] = ref_copy(data['graph'][key])
graph['ctrs'] = np.matmul(data['graph']['ctrs'], rot)
graph['feats'] = np.matmul(data['graph']['feats'], rot)
new_data['graph'] = graph
data = new_data
else:
new_data = dict()
for key in ['city', 'orig', 'gt_preds', 'has_preds', 'theta', 'rot', 'feats', 'ctrs', 'graph']:
if key in data:
new_data[key] = ref_copy(data[key])
data = new_data
if 'raster' in self.config and self.config['raster']:
data.pop('graph')
x_min, x_max, y_min, y_max = self.config['pred_range']
cx, cy = data['orig']
region = [cx + x_min, cx + x_max, cy + y_min, cy + y_max]
raster = self.map_query.query(region, data['theta'], data['city'])
data['raster'] = raster
return data
data = self.read_argo_data(idx)
data = self.get_obj_feats(data)
data['idx'] = idx
if 'raster' in self.config and self.config['raster']:
x_min, x_max, y_min, y_max = self.config['pred_range']
cx, cy = data['orig']
region = [cx + x_min, cx + x_max, cy + y_min, cy + y_max]
raster = self.map_query.query(region, data['theta'], data['city'])
data['raster'] = raster
return data
data['graph'] = self.get_lane_graph(data)
return data
def __len__(self):
if 'preprocess' in self.config and self.config['preprocess']:
return len(self.split)
else:
return len(self.avl)
def read_argo_data(self, idx):
city = copy.deepcopy(self.avl[idx].city)
"""TIMESTAMP,TRACK_ID,OBJECT_TYPE,X,Y,CITY_NAME"""
df = copy.deepcopy(self.avl[idx].seq_df)
agt_ts = np.sort(np.unique(df['TIMESTAMP'].values))
mapping = dict()
for i, ts in enumerate(agt_ts):
mapping[ts] = i
trajs = np.concatenate((
df.X.to_numpy().reshape(-1, 1),
df.Y.to_numpy().reshape(-1, 1)), 1)
steps = [mapping[x] for x in df['TIMESTAMP'].values]
steps = np.asarray(steps, np.int64)
objs = df.groupby(['TRACK_ID', 'OBJECT_TYPE']).groups
keys = list(objs.keys())
obj_type = [x[1] for x in keys]
agt_idx = obj_type.index('AGENT')
idcs = objs[keys[agt_idx]]
agt_traj = trajs[idcs]
agt_step = steps[idcs]
del keys[agt_idx]
ctx_trajs, ctx_steps = [], []
for key in keys:
idcs = objs[key]
ctx_trajs.append(trajs[idcs])
ctx_steps.append(steps[idcs])
data = dict()
data['city'] = city
data['trajs'] = [agt_traj] + ctx_trajs
data['steps'] = [agt_step] + ctx_steps
return data
def get_obj_feats(self, data):
orig = data['trajs'][0][19].copy().astype(np.float32)
if self.train and self.config['rot_aug']:
theta = np.random.rand() * np.pi * 2.0
else:
pre = data['trajs'][0][18] - orig
theta = np.pi - np.arctan2(pre[1], pre[0])
rot = np.asarray([
[np.cos(theta), -np.sin(theta)],
[np.sin(theta), np.cos(theta)]], np.float32)
feats, ctrs, gt_preds, has_preds = [], [], [], []
for traj, step in zip(data['trajs'], data['steps']):
if 19 not in step:
continue
gt_pred = np.zeros((30, 2), np.float32)
has_pred = np.zeros(30, np.bool)
future_mask = np.logical_and(step >= 20, step < 50)
post_step = step[future_mask] - 20
post_traj = traj[future_mask]
gt_pred[post_step] = post_traj
has_pred[post_step] = 1
obs_mask = step < 20
step = step[obs_mask]
traj = traj[obs_mask]
idcs = step.argsort()
step = step[idcs]
traj = traj[idcs]
for i in range(len(step)):
if step[i] == 19 - (len(step) - 1) + i:
break
step = step[i:]
traj = traj[i:]
feat = np.zeros((20, 3), np.float32)
feat[step, :2] = np.matmul(rot, (traj - orig.reshape(-1, 2)).T).T
feat[step, 2] = 1.0
x_min, x_max, y_min, y_max = self.config['pred_range']
if feat[-1, 0] < x_min or feat[-1, 0] > x_max or feat[-1, 1] < y_min or feat[-1, 1] > y_max:
continue
ctrs.append(feat[-1, :2].copy())
feat[1:, :2] -= feat[:-1, :2]
feat[step[0], :2] = 0
feats.append(feat)
gt_preds.append(gt_pred)
has_preds.append(has_pred)
feats = np.asarray(feats, np.float32)
ctrs = np.asarray(ctrs, np.float32)
gt_preds = np.asarray(gt_preds, np.float32)
has_preds = np.asarray(has_preds, np.bool)
data['feats'] = feats
data['ctrs'] = ctrs
data['orig'] = orig
data['theta'] = theta
data['rot'] = rot
data['gt_preds'] = gt_preds
data['has_preds'] = has_preds
return data
def get_lane_graph(self, data):
"""Get a rectangle area defined by pred_range."""
x_min, x_max, y_min, y_max = self.config['pred_range']
radius = max(abs(x_min), abs(x_max)) + max(abs(y_min), abs(y_max))
lane_ids = self.am.get_lane_ids_in_xy_bbox(data['orig'][0], data['orig'][1], data['city'], radius)
lane_ids = copy.deepcopy(lane_ids)
lanes = dict()
for lane_id in lane_ids:
lane = self.am.city_lane_centerlines_dict[data['city']][lane_id]
lane = copy.deepcopy(lane)
centerline = np.matmul(data['rot'], (lane.centerline - data['orig'].reshape(-1, 2)).T).T
x, y = centerline[:, 0], centerline[:, 1]
if x.max() < x_min or x.min() > x_max or y.max() < y_min or y.min() > y_max:
continue
else:
"""Getting polygons requires original centerline"""
polygon = self.am.get_lane_segment_polygon(lane_id, data['city'])
polygon = copy.deepcopy(polygon)
lane.centerline = centerline
lane.polygon = np.matmul(data['rot'], (polygon[:, :2] - data['orig'].reshape(-1, 2)).T).T
lanes[lane_id] = lane
lane_ids = list(lanes.keys())
ctrs, feats, turn, control, intersect = [], [], [], [], []
for lane_id in lane_ids:
lane = lanes[lane_id]
ctrln = lane.centerline
num_segs = len(ctrln) - 1
ctrs.append(np.asarray((ctrln[:-1] + ctrln[1:]) / 2.0, np.float32))
feats.append(np.asarray(ctrln[1:] - ctrln[:-1], np.float32))
x = np.zeros((num_segs, 2), np.float32)
if lane.turn_direction == 'LEFT':
x[:, 0] = 1
elif lane.turn_direction == 'RIGHT':
x[:, 1] = 1
else:
pass
turn.append(x)
control.append(lane.has_traffic_control * np.ones(num_segs, np.float32))
intersect.append(lane.is_intersection * np.ones(num_segs, np.float32))
node_idcs = []
count = 0
for i, ctr in enumerate(ctrs):
node_idcs.append(range(count, count + len(ctr)))
count += len(ctr)
num_nodes = count
pre, suc = dict(), dict()
for key in ['u', 'v']:
pre[key], suc[key] = [], []
for i, lane_id in enumerate(lane_ids):
lane = lanes[lane_id]
idcs = node_idcs[i]
pre['u'] += idcs[1:]
pre['v'] += idcs[:-1]
if lane.predecessors is not None:
for nbr_id in lane.predecessors:
if nbr_id in lane_ids:
j = lane_ids.index(nbr_id)
pre['u'].append(idcs[0])
pre['v'].append(node_idcs[j][-1])
suc['u'] += idcs[:-1]
suc['v'] += idcs[1:]
if lane.successors is not None:
for nbr_id in lane.successors:
if nbr_id in lane_ids:
j = lane_ids.index(nbr_id)
suc['u'].append(idcs[-1])
suc['v'].append(node_idcs[j][0])
lane_idcs = []
for i, idcs in enumerate(node_idcs):
lane_idcs.append(i * np.ones(len(idcs), np.int64))
lane_idcs = np.concatenate(lane_idcs, 0)
pre_pairs, suc_pairs, left_pairs, right_pairs = [], [], [], []
for i, lane_id in enumerate(lane_ids):
lane = lanes[lane_id]
nbr_ids = lane.predecessors
if nbr_ids is not None:
for nbr_id in nbr_ids:
if nbr_id in lane_ids:
j = lane_ids.index(nbr_id)
pre_pairs.append([i, j])
nbr_ids = lane.successors
if nbr_ids is not None:
for nbr_id in nbr_ids:
if nbr_id in lane_ids:
j = lane_ids.index(nbr_id)
suc_pairs.append([i, j])
nbr_id = lane.l_neighbor_id
if nbr_id is not None:
if nbr_id in lane_ids:
j = lane_ids.index(nbr_id)
left_pairs.append([i, j])
nbr_id = lane.r_neighbor_id
if nbr_id is not None:
if nbr_id in lane_ids:
j = lane_ids.index(nbr_id)
right_pairs.append([i, j])
pre_pairs = np.asarray(pre_pairs, np.int64)
suc_pairs = np.asarray(suc_pairs, np.int64)
left_pairs = np.asarray(left_pairs, np.int64)
right_pairs = np.asarray(right_pairs, np.int64)
graph = dict()
graph['ctrs'] = np.concatenate(ctrs, 0)
graph['num_nodes'] = num_nodes
graph['feats'] = np.concatenate(feats, 0)
graph['turn'] = np.concatenate(turn, 0)
graph['control'] = np.concatenate(control, 0)
graph['intersect'] = np.concatenate(intersect, 0)
graph['pre'] = [pre]
graph['suc'] = [suc]
graph['lane_idcs'] = lane_idcs
graph['pre_pairs'] = pre_pairs
graph['suc_pairs'] = suc_pairs
graph['left_pairs'] = left_pairs
graph['right_pairs'] = right_pairs
for k1 in ['pre', 'suc']:
for k2 in ['u', 'v']:
graph[k1][0][k2] = np.asarray(graph[k1][0][k2], np.int64)
for key in ['pre', 'suc']:
if 'scales' in self.config and self.config['scales']:
#TODO: delete here
graph[key] += dilated_nbrs2(graph[key][0], graph['num_nodes'], self.config['scales'])
else:
graph[key] += dilated_nbrs(graph[key][0], graph['num_nodes'], self.config['num_scales'])
return graph
class ArgoTestDataset(ArgoDataset):
def __init__(self, split, config, train=False):
self.config = config
self.train = train
split2 = config['val_split'] if split=='val' else config['test_split']
split = self.config['preprocess_val'] if split=='val' else self.config['preprocess_test']
self.avl = ArgoverseForecastingLoader(split2)
self.avl.seq_list = sorted(self.avl.seq_list)
if 'preprocess' in config and config['preprocess']:
if train:
self.split = np.load(split, allow_pickle=True)
else:
self.split = np.load(split, allow_pickle=True)
else:
self.avl = ArgoverseForecastingLoader(split)
self.am = ArgoverseMap()
def __getitem__(self, idx):
if 'preprocess' in self.config and self.config['preprocess']:
data = self.split[idx]
data['argo_id'] = int(self.avl.seq_list[idx].name[:-4]) #160547
if self.train and self.config['rot_aug']:
#TODO: Delete Here because no rot_aug
new_data = dict()
for key in ['orig', 'gt_preds', 'has_preds']:
new_data[key] = ref_copy(data[key])
dt = np.random.rand() * self.config['rot_size']#np.pi * 2.0
theta = data['theta'] + dt
new_data['theta'] = theta
new_data['rot'] = np.asarray([
[np.cos(theta), -np.sin(theta)],
[np.sin(theta), np.cos(theta)]], np.float32)
rot = np.asarray([
[np.cos(-dt), -np.sin(-dt)],
[np.sin(-dt), np.cos(-dt)]], np.float32)
new_data['feats'] = data['feats'].copy()
new_data['feats'][:, :, :2] = np.matmul(new_data['feats'][:, :, :2], rot)
new_data['ctrs'] = np.matmul(data['ctrs'], rot)
graph = dict()
for key in ['num_nodes', 'turn', 'control', 'intersect', 'pre', 'suc', 'lane_idcs', 'left_pairs', 'right_pairs']:
graph[key] = ref_copy(data['graph'][key])
graph['ctrs'] = np.matmul(data['graph']['ctrs'], rot)
graph['feats'] = np.matmul(data['graph']['feats'], rot)
new_data['graph'] = graph
data = new_data
else:
new_data = dict()
for key in ['orig', 'gt_preds', 'has_preds', 'theta', 'rot', 'feats', 'ctrs', 'graph','argo_id','city']:
if key in data:
new_data[key] = ref_copy(data[key])
data = new_data
return data
data = self.read_argo_data(idx)
data = self.get_obj_feats(data)
data['graph'] = self.get_lane_graph(data)
data['idx'] = idx
return data
def __len__(self):
if 'preprocess' in self.config and self.config['preprocess']:
return len(self.split)
else:
return len(self.avl)
class MapQuery(object):
#TODO: DELETE HERE No used
"""[Deprecated] Query rasterized map for a given region"""
def __init__(self, scale, autoclip=True):
"""
scale: one meter -> num of `scale` voxels
"""
super(MapQuery, self).__init__()
assert scale in (1,2,4,8)
self.scale = scale
root_dir = '/mnt/yyz_data_1/users/ming.liang/argo/tmp/map_npy/'
mia_map = np.load(f"{root_dir}/mia_{scale}.npy")
pit_map = np.load(f"{root_dir}/pit_{scale}.npy")
self.autoclip = autoclip
self.map = dict(
MIA=mia_map,
PIT=pit_map
)
self.OFFSET = dict(
MIA=np.array([502,-545]),
PIT=np.array([-642,211]),
)
self.SHAPE=dict(
MIA=(3674, 1482),
PIT= (3043, 4259)
)
def query(self,region,theta=0,city='MIA'):
"""
region: [x0,x1,y0,y1]
city: 'MIA' or 'PIT'
theta: rotation of counter-clockwise, angel/degree likd 90,180
return map_mask: 2D array of shape (x1-x0)*scale, (y1-y0)*scale
"""
region = [int(x) for x in region]
map_data = self.map[city]
offset = self.OFFSET[city]
shape = self.SHAPE[city]
x0,x1,y0,y1 = region
x0,x1 = x0+offset[0],x1+offset[0]
y0,y1 = y0+offset[1],y1+offset[1]
x0,x1,y0,y1 = [round(_*self.scale) for _ in [x0,x1,y0,y1]]
# extend the crop region to 2x -- for rotation
H,W = y1-y0,x1-x0
x0 -= int(round(W/2))
y0 -= int(round(H/2))
x1 += int(round(W/2))
y1 += int(round(H/2))
results = np.zeros([H*2,W*2])
# padding of crop -- for outlier
xstart,ystart=0,0
if self.autoclip:
if x0<0:
xstart = -x0
x0 = 0
if y0<0:
ystart = -y0
y0 = 0
x1 = min(x1,shape[1]*self.scale-1)
y1 = min(y1,shape[0]*self.scale-1)
map_mask = map_data[y0:y1,x0:x1]
_H,_W = map_mask.shape
results[ystart:ystart+_H, xstart:xstart+_W]=map_mask
results = results[::-1] # flip to cartesian
# rotate and remove margin
rot_map = rotate(results,theta,center=None,order=0) # center None->map center
H,W = results.shape
outputH,outputW = round(H/2),round(W/2)
startH,startW = round(H//4),round(W//4)
crop_map = rot_map[startH:startH+outputH,startW:startW+outputW]
return crop_map
def ref_copy(data):
if isinstance(data, list):
return [ref_copy(x) for x in data]
if isinstance(data, dict):
d = dict()
for key in data:
d[key] = ref_copy(data[key])
return d
return data
def dilated_nbrs(nbr, num_nodes, num_scales):
data = np.ones(len(nbr['u']), np.bool)
csr = sparse.csr_matrix((data, (nbr['u'], nbr['v'])), shape=(num_nodes, num_nodes))
mat = csr
nbrs = []
for i in range(1, num_scales):
mat = mat * mat
nbr = dict()
coo = mat.tocoo()
nbr['u'] = coo.row.astype(np.int64)
nbr['v'] = coo.col.astype(np.int64)
nbrs.append(nbr)
return nbrs
def dilated_nbrs2(nbr, num_nodes, scales):
data = np.ones(len(nbr['u']), np.bool)
csr = sparse.csr_matrix((data, (nbr['u'], nbr['v'])), shape=(num_nodes, num_nodes))
mat = csr
nbrs = []
for i in range(1, max(scales)):
mat = mat * csr
if i + 1 in scales:
nbr = dict()
coo = mat.tocoo()
nbr['u'] = coo.row.astype(np.int64)
nbr['v'] = coo.col.astype(np.int64)
nbrs.append(nbr)
return nbrs
def collate_fn(batch):
batch = from_numpy(batch)
return_batch = dict()
# Batching by use a list for non-fixed size
for key in batch[0].keys():
return_batch[key] = [x[key] for x in batch]
return return_batch
def from_numpy(data):
"""Recursively transform numpy.ndarray to torch.Tensor.
"""
if isinstance(data, dict):
for key in data.keys():
data[key] = from_numpy(data[key])
if isinstance(data, list) or isinstance(data, tuple):
data = [from_numpy(x) for x in data]
if isinstance(data, np.ndarray):
"""Pytorch now has bool type."""
data = torch.from_numpy(data)
return data
def cat(batch):
if torch.is_tensor(batch[0]):
batch = [x.unsqueeze(0) for x in batch]
return_batch = torch.cat(batch, 0)
elif isinstance(batch[0], list) or isinstance(batch[0], tuple):
batch = zip(*batch)
return_batch = [cat(x) for x in batch]
elif isinstance(batch[0], dict):
return_batch = dict()
for key in batch[0].keys():
return_batch[key] = cat([x[key] for x in batch])
else:
return_batch = batch
return return_batch