forked from uber-research/LaneGCN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayers.py
353 lines (284 loc) · 11.6 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
# Copyright (c) 2020 Uber Technologies, Inc.
# Please check LICENSE for more detail
import numpy as np
from fractions import gcd
from numbers import Number
import torch
from torch import nn
from torch.nn import functional as F
# Conv layer with norm (gn or bn) and relu.
class Conv(nn.Module):
def __init__(self, n_in, n_out, kernel_size=3, stride=1, norm='GN', ng=32, act=True):
super(Conv, self).__init__()
assert(norm in ['GN', 'BN', 'SyncBN'])
self.conv = nn.Conv2d(n_in, n_out, kernel_size=kernel_size, padding=(int(kernel_size) - 1) // 2, stride=stride, bias=False)
if norm == 'GN':
self.norm = nn.GroupNorm(gcd(ng, n_out), n_out)
elif norm == 'BN':
self.norm = nn.BatchNorm2d(n_out)
else:
exit('SyncBN has not been added!')
self.relu = nn.ReLU(inplace=True)
self.act = act
def forward(self, x):
out = self.conv(x)
out = self.norm(out)
if self.act:
out = self.relu(out)
return out
class Conv1d(nn.Module):
def __init__(self, n_in, n_out, kernel_size=3, stride=1, norm='GN', ng=32, act=True):
super(Conv1d, self).__init__()
assert(norm in ['GN', 'BN', 'SyncBN'])
self.conv = nn.Conv1d(n_in, n_out, kernel_size=kernel_size, padding=(int(kernel_size) - 1) // 2, stride=stride, bias=False)
if norm == 'GN':
self.norm = nn.GroupNorm(gcd(ng, n_out), n_out)
elif norm == 'BN':
self.norm = nn.BatchNorm1d(n_out)
else:
exit('SyncBN has not been added!')
self.relu = nn.ReLU(inplace=True)
self.act = act
def forward(self, x):
out = self.conv(x)
out = self.norm(out)
if self.act:
out = self.relu(out)
return out
class Linear(nn.Module):
def __init__(self, n_in, n_out, norm='GN', ng=32, act=True):
super(Linear, self).__init__()
assert(norm in ['GN', 'BN', 'SyncBN'])
self.linear = nn.Linear(n_in, n_out, bias=False)
if norm == 'GN':
self.norm = nn.GroupNorm(gcd(ng, n_out), n_out)
elif norm == 'BN':
self.norm = nn.BatchNorm1d(n_out)
else:
exit('SyncBN has not been added!')
self.relu = nn.ReLU(inplace=True)
self.act = act
def forward(self, x):
out = self.linear(x)
out = self.norm(out)
if self.act:
out = self.relu(out)
return out
# Post residual layer
class PostRes(nn.Module):
def __init__(self, n_in, n_out, stride=1, norm='GN', ng=32, act=True):
super(PostRes, self).__init__()
assert(norm in ['GN', 'BN', 'SyncBN'])
self.conv1 = nn.Conv2d(n_in, n_out, kernel_size=3, stride=stride, padding=1, bias=False)
self.conv2 = nn.Conv2d(n_out, n_out, kernel_size=3, padding=1, bias=False)
self.relu = nn.ReLU(inplace = True)
# All use name bn1 and bn2 to load imagenet pretrained weights
if norm == 'GN':
self.bn1 = nn.GroupNorm(gcd(ng, n_out), n_out)
self.bn2 = nn.GroupNorm(gcd(ng, n_out), n_out)
elif norm == 'BN':
self.bn1 = nn.BatchNorm2d(n_out)
self.bn2 = nn.BatchNorm2d(n_out)
else:
exit('SyncBN has not been added!')
if stride != 1 or n_out != n_in:
if norm == 'GN':
self.downsample = nn.Sequential(
nn.Conv2d(n_in, n_out, kernel_size=1, stride=stride, bias=False),
nn.GroupNorm(gcd(ng, n_out), n_out))
elif norm == 'BN':
self.downsample = nn.Sequential(
nn.Conv2d(n_in, n_out, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(n_out))
else:
exit('SyncBN has not been added!')
else:
self.downsample = None
self.act = act
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
x = self.downsample(x)
out += x
if self.act:
out = self.relu(out)
return out
class Res1d(nn.Module):
def __init__(self, n_in, n_out, kernel_size=3, stride=1, norm='GN', ng=32, act=True):
super(Res1d, self).__init__()
assert(norm in ['GN', 'BN', 'SyncBN'])
padding = (int(kernel_size) - 1) // 2
self.conv1 = nn.Conv1d(n_in, n_out, kernel_size=kernel_size, stride=stride, padding=padding, bias=False)
self.conv2 = nn.Conv1d(n_out, n_out, kernel_size=kernel_size, padding=padding, bias=False)
self.relu = nn.ReLU(inplace = True)
# All use name bn1 and bn2 to load imagenet pretrained weights
if norm == 'GN':
self.bn1 = nn.GroupNorm(gcd(ng, n_out), n_out)
self.bn2 = nn.GroupNorm(gcd(ng, n_out), n_out)
elif norm == 'BN':
self.bn1 = nn.BatchNorm1d(n_out)
self.bn2 = nn.BatchNorm1d(n_out)
else:
exit('SyncBN has not been added!')
if stride != 1 or n_out != n_in:
if norm == 'GN':
self.downsample = nn.Sequential(
nn.Conv1d(n_in, n_out, kernel_size=1, stride=stride, bias=False),
nn.GroupNorm(gcd(ng, n_out), n_out))
elif norm == 'BN':
self.downsample = nn.Sequential(
nn.Conv1d(n_in, n_out, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm1d(n_out))
else:
exit('SyncBN has not been added!')
else:
self.downsample = None
self.act = act
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
x = self.downsample(x)
out += x
if self.act:
out = self.relu(out)
return out
class LinearRes(nn.Module):
def __init__(self, n_in, n_out, norm='GN', ng=32):
super(LinearRes, self).__init__()
assert(norm in ['GN', 'BN', 'SyncBN'])
self.linear1 = nn.Linear(n_in, n_out, bias=False)
self.linear2 = nn.Linear(n_out, n_out, bias=False)
self.relu = nn.ReLU(inplace=True)
if norm == 'GN':
self.norm1 = nn.GroupNorm(gcd(ng, n_out), n_out)
self.norm2 = nn.GroupNorm(gcd(ng, n_out), n_out)
elif norm == 'BN':
self.norm1 = nn.BatchNorm1d(n_out)
self.norm2 = nn.BatchNorm1d(n_out)
else:
exit('SyncBN has not been added!')
if n_in != n_out:
if norm == 'GN':
self.transform = nn.Sequential(
nn.Linear(n_in, n_out, bias=False),
nn.GroupNorm(gcd(ng, n_out), n_out))
elif norm == 'BN':
self.transform = nn.Sequential(
nn.Linear(n_in, n_out, bias=False),
nn.BatchNorm1d(n_out))
else:
exit('SyncBN has not been added!')
else:
self.transform = None
def forward(self, x):
out = self.linear1(x)
out = self.norm1(out)
out = self.relu(out)
out = self.linear2(out)
out = self.norm2(out)
if self.transform is not None:
out += self.transform(x)
else:
out += x
out = self.relu(out)
return out
class Null(nn.Module):
def __init__(self):
super(Null, self).__init__()
def forward(self, x):
return x
def linear_interp(x, n_max):
"""Given a Tensor of normed positions, returns linear interplotion weights and indices.
Example: For position 1.2, its neighboring pixels have indices 0 and 1, corresponding
to coordinates 0.5 and 1.5 (center of the pixel), and linear weights are 0.3 and 0.7.
Args:
x: Normalizzed positions, ranges from 0 to 1, float Tensor.
n_max: Size of the dimension (pixels), multiply x to get absolution positions.
Returns: Weights and indices of left side and right side.
"""
x = x * n_max - 0.5
mask = x < 0
x[mask] = 0
mask = x > n_max - 1
x[mask] = n_max - 1
n = torch.floor(x)
rw = x - n
lw = 1.0 - rw
li = n.long()
ri = li + 1
mask = ri > n_max - 1
ri[mask] = n_max - 1
return lw, li, rw, ri
def get_pixel_feat(fm, bboxes, pts_range):
x, y = bboxes[:, 0], bboxes[:, 1]
x_min, x_max, y_min, y_max = pts_range[:4]
x = (x - x_min) / (x_max - x_min)
y = (y_max - y) / (y_max - y_min)
_, fm_h, fm_w = fm.size()
xlw, xli, xhw, xhi = linear_interp(x, fm_w)
ylw, yli, yhw, yhi = linear_interp(y, fm_h)
feat = \
(xlw * ylw).unsqueeze(1) * fm[:, yli, xli].transpose(0, 1) +\
(xlw * yhw).unsqueeze(1) * fm[:, yhi, xli].transpose(0, 1) +\
(xhw * ylw).unsqueeze(1) * fm[:, yli, xhi].transpose(0, 1) +\
(xhw * yhw).unsqueeze(1) * fm[:, yhi, xhi].transpose(0, 1)
return feat
def get_roi_feat(fm, bboxes, roi_size, pts_range):
"""Given a set of BEV bboxes get their BEV ROI features.
Args:
fm: Feature map, float tensor, chw
bboxes: BEV bboxes, n x 5 float tensor (cx, cy, wid, hgt, theta)
roi_size: ROI size (number of bins), [int] or int
pts_range: Range of points, tuple of ints, (x_min, x_max, y_min, y_max, z_min, z_max)
Returns: Extracted features of size (num_roi, c, roi_size, roi_size).
"""
if isinstance(roi_size, Number):
roi_size = [roi_size, roi_size]
cx, cy, wid, hgt, theta = bboxes[:, 0], bboxes[:, 1], bboxes[:, 2], bboxes[:, 3], bboxes[:, 4]
st = torch.sin(theta)
ct = torch.cos(theta)
num_bboxes = len(bboxes)
rot_mat = bboxes.new().resize_(num_bboxes, 2, 2)
rot_mat[:, 0, 0] = ct
rot_mat[:, 0, 1] = -st
rot_mat[:, 1, 0] = st
rot_mat[:, 1, 1] = ct
offset = bboxes.new().resize_(len(bboxes), roi_size[0], roi_size[1], 2)
x_bin = (torch.arange(roi_size[1]).float().to(bboxes.device) + 0.5) / roi_size[1] - 0.5
offset[:, :, :, 0] = x_bin.view(1, 1, -1) * wid.view(-1, 1, 1)
y_bin = (torch.arange(roi_size[0] - 1, -1, -1).float().to(bboxes.device) + 0.5) / roi_size[0] - 0.5
offset[:, :, :, 1] = y_bin.view(1, -1, 1) * hgt.view(-1, 1, 1)
rot_mat = rot_mat.view(num_bboxes, 1, 1, 2, 2)
offset = offset.view(num_bboxes, roi_size[0], roi_size[1], 2, 1)
offset = torch.matmul(rot_mat, offset).view(num_bboxes, roi_size[0], roi_size[1], 2)
x = cx.view(-1, 1, 1) + offset[:, :, :, 0]
y = cy.view(-1, 1, 1) + offset[:, :, :, 1]
x = x.view(-1)
y = y.view(-1)
x_min, x_max, y_min, y_max = pts_range[:4]
x = (x - x_min) / (x_max - x_min)
y = (y_max - y) / (y_max - y_min)
fm_c, fm_h, fm_w = fm.size()
feat = fm.new().float().resize_(num_bboxes * roi_size[0] * roi_size[1], fm_c)
mask = (x > 0) * (x < 1) * (y > 0) * (y < 1)
x = x[mask]
y = y[mask]
xlw, xli, xhw, xhi = linear_interp(x, fm_w)
ylw, yli, yhw, yhi = linear_interp(y, fm_h)
feat[mask] = \
(xlw * ylw).unsqueeze(1) * fm[:, yli, xli].transpose(0, 1) +\
(xlw * yhw).unsqueeze(1) * fm[:, yhi, xli].transpose(0, 1) +\
(xhw * ylw).unsqueeze(1) * fm[:, yli, xhi].transpose(0, 1) +\
(xhw * yhw).unsqueeze(1) * fm[:, yhi, xhi].transpose(0, 1)
feat[torch.logical_not(mask)] = 0
feat = feat.view(num_bboxes, roi_size[0] * roi_size[1], fm_c)
feat = feat.transpose(1, 2).contiguous().view(num_bboxes, -1, roi_size[0], roi_size[1])
return feat