forked from nachiket92/conv-social-pooling
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
189 lines (147 loc) · 7.33 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from __future__ import print_function
import torch
from model import highwayNet
from utils import ngsimDataset,maskedNLL,maskedMSE,maskedNLLTest
from torch.utils.data import DataLoader
import time
import math
## Network Arguments
args = {}
args['use_cuda'] = True
args['encoder_size'] = 64
args['decoder_size'] = 128
args['in_length'] = 16
args['out_length'] = 25
args['grid_size'] = (13,3)
args['soc_conv_depth'] = 64
args['conv_3x1_depth'] = 16
args['dyn_embedding_size'] = 32
args['input_embedding_size'] = 32
args['num_lat_classes'] = 3
args['num_lon_classes'] = 2
args['use_maneuvers'] = True
args['train_flag'] = True
# Initialize network
net = highwayNet(args)
if args['use_cuda']:
net = net.cuda()
## Initialize optimizer
pretrainEpochs = 5
trainEpochs = 3
optimizer = torch.optim.Adam(net.parameters())
batch_size = 128
crossEnt = torch.nn.BCELoss()
## Initialize data loaders
trSet = ngsimDataset('data/TrainSet.mat')
valSet = ngsimDataset('data/ValSet.mat')
trDataloader = DataLoader(trSet,batch_size=batch_size,shuffle=True,num_workers=8,collate_fn=trSet.collate_fn)
valDataloader = DataLoader(valSet,batch_size=batch_size,shuffle=True,num_workers=8,collate_fn=valSet.collate_fn)
## Variables holding train and validation loss values:
train_loss = []
val_loss = []
prev_val_loss = math.inf
for epoch_num in range(pretrainEpochs+trainEpochs):
if epoch_num == 0:
print('Pre-training with MSE loss')
elif epoch_num == pretrainEpochs:
print('Training with NLL loss')
## Train:_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
net.train_flag = True
# Variables to track training performance:
avg_tr_loss = 0
avg_tr_time = 0
avg_lat_acc = 0
avg_lon_acc = 0
for i, data in enumerate(trDataloader):
st_time = time.time()
hist, nbrs, mask, lat_enc, lon_enc, fut, op_mask = data
if args['use_cuda']:
hist = hist.cuda()
nbrs = nbrs.cuda()
mask = mask.cuda()
lat_enc = lat_enc.cuda()
lon_enc = lon_enc.cuda()
fut = fut.cuda()
op_mask = op_mask.cuda()
# Forward pass
if args['use_maneuvers']:
fut_pred, lat_pred, lon_pred = net(hist, nbrs, mask, lat_enc, lon_enc)
# Pre-train with MSE loss to speed up training
if epoch_num < pretrainEpochs:
l = maskedMSE(fut_pred, fut, op_mask)
else:
# Train with NLL loss
l = maskedNLL(fut_pred, fut, op_mask) + crossEnt(lat_pred, lat_enc) + crossEnt(lon_pred, lon_enc)
avg_lat_acc += (torch.sum(torch.max(lat_pred.data, 1)[1] == torch.max(lat_enc.data, 1)[1])).item() / lat_enc.size()[0]
avg_lon_acc += (torch.sum(torch.max(lon_pred.data, 1)[1] == torch.max(lon_enc.data, 1)[1])).item() / lon_enc.size()[0]
else:
fut_pred = net(hist, nbrs, mask, lat_enc, lon_enc)
if epoch_num < pretrainEpochs:
l = maskedMSE(fut_pred, fut, op_mask)
else:
l = maskedNLL(fut_pred, fut, op_mask)
# Backprop and update weights
optimizer.zero_grad()
l.backward()
a = torch.nn.utils.clip_grad_norm_(net.parameters(), 10)
optimizer.step()
# Track average train loss and average train time:
batch_time = time.time()-st_time
avg_tr_loss += l.item()
avg_tr_time += batch_time
if i%100 == 99:
eta = avg_tr_time/100*(len(trSet)/batch_size-i)
print("Epoch no:",epoch_num+1,"| Epoch progress(%):",format(i/(len(trSet)/batch_size)*100,'0.2f'), "| Avg train loss:",format(avg_tr_loss/100,'0.4f'),"| Acc:",format(avg_lat_acc,'0.4f'),format(avg_lon_acc,'0.4f'), "| Validation loss prev epoch",format(prev_val_loss,'0.4f'), "| ETA(s):",int(eta))
train_loss.append(avg_tr_loss/100)
avg_tr_loss = 0
avg_lat_acc = 0
avg_lon_acc = 0
avg_tr_time = 0
# _________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
## Validate:______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
net.train_flag = False
print("Epoch",epoch_num+1,'complete. Calculating validation loss...')
avg_val_loss = 0
avg_val_lat_acc = 0
avg_val_lon_acc = 0
val_batch_count = 0
total_points = 0
for i, data in enumerate(valDataloader):
st_time = time.time()
hist, nbrs, mask, lat_enc, lon_enc, fut, op_mask = data
if args['use_cuda']:
hist = hist.cuda()
nbrs = nbrs.cuda()
mask = mask.cuda()
lat_enc = lat_enc.cuda()
lon_enc = lon_enc.cuda()
fut = fut.cuda()
op_mask = op_mask.cuda()
# Forward pass
if args['use_maneuvers']:
if epoch_num < pretrainEpochs:
# During pre-training with MSE loss, validate with MSE for true maneuver class trajectory
net.train_flag = True
fut_pred, _ , _ = net(hist, nbrs, mask, lat_enc, lon_enc)
l = maskedMSE(fut_pred, fut, op_mask)
else:
# During training with NLL loss, validate with NLL over multi-modal distribution
fut_pred, lat_pred, lon_pred = net(hist, nbrs, mask, lat_enc, lon_enc)
l = maskedNLLTest(fut_pred, lat_pred, lon_pred, fut, op_mask,avg_along_time = True)
avg_val_lat_acc += (torch.sum(torch.max(lat_pred.data, 1)[1] == torch.max(lat_enc.data, 1)[1])).item() / lat_enc.size()[0]
avg_val_lon_acc += (torch.sum(torch.max(lon_pred.data, 1)[1] == torch.max(lon_enc.data, 1)[1])).item() / lon_enc.size()[0]
else:
fut_pred = net(hist, nbrs, mask, lat_enc, lon_enc)
if epoch_num < pretrainEpochs:
l = maskedMSE(fut_pred, fut, op_mask)
else:
l = maskedNLL(fut_pred, fut, op_mask)
avg_val_loss += l.item()
val_batch_count += 1
print(avg_val_loss/val_batch_count)
# Print validation loss and update display variables
print('Validation loss :',format(avg_val_loss/val_batch_count,'0.4f'),"| Val Acc:",format(avg_val_lat_acc/val_batch_count*100,'0.4f'),format(avg_val_lon_acc/val_batch_count*100,'0.4f'))
val_loss.append(avg_val_loss/val_batch_count)
prev_val_loss = avg_val_loss/val_batch_count
#__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
torch.save(net.state_dict(), 'trained_models/cslstm_m.tar')