-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathMyUnit.py
320 lines (269 loc) · 10.6 KB
/
MyUnit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
"""
.. module:: MyUnit
:synopsis: Python version to convert SI Units and Natural Units. Created on 12/19/2019.
.. moduleauthor:: Chen Sun <[email protected]>
This module defines a classes called SIUnit and NaturalUnit. It is based on class Unit and utilizes Sympy to parse and simplify expressions.
# CS 12/21/2019: TODO: check whether it's possible to modify __repr__() method to return symbols directly, instead of
using the __call__() method.
# CS 06/25/2020: added Gauss
"""
import numpy as np
from sympy import symbols
from sympy.parsing.sympy_parser import parse_expr
# from sympy import simplify
# from sympy import refine, Q
# from sympy import factor
# the factor way, without args same as expr
# with args it's not good
# self.expr = np.array(factor(input).args)
# import re
# list_expr = (re.findall(r"[\w]+",input))
# from sympy import degree
# from sympy import poly
# from sympy import sympify
class Unit:
def __init__(self, input):
try:
# assume text
self.symb = parse_expr(input)
except:
# assume Unit instance
try:
self.symb = input.symb
except:
# assume symbols
self.symb = input
# the string form
self.str = str(self.symb)
def __mul__(self, other):
mul = self.str + '*' + other.str
# the parsed symbo form
symb = parse_expr(mul)
# the string form
string = str(symb)
return Unit(string)
def __div__(self, other):
div = self.str + '/(' + other.str + ')'
# the parsed symbo form
symb = parse_expr(div)
# the string form
string = str(symb)
return Unit(string)
def __call__(self):
return self.symb
def __str__(self):
return self.str
# def __repr__(self):
# self.symb
# return ''
# # example
# test1 = Unit('10*(m)**2/s**2*s')
# test2 = Unit('(10*m)**3/s**2*s')
# test1 / test2
# test3 = test1 / test2
# test3()
class SIUnit(Unit):
def __init__(self, input):
Unit.__init__(self, input)
# target units
kg, m, s, K, A = symbols("kg m s K A", positive=True)
list_atoms = [kg, m, s, K, A]
# quantum
h_val = 6.626070040*10**(-34)*kg*m**2/s # Js
hbar_val = 1.054571800*10**(-34)*kg*m**2/s # Js
eV_val = 1.602176565*10**(-19)*kg*m**2/s**2 # J
c_val = 299792458*m/s # m/s
kB_val = 1.38064852*10**(-23)*kg*m**2/s**2/K # J/K
Alfa_val = 1/137.035
GN_val = 6.67408*10**(-11)*m**3/kg/s**2 # m**3 kg**(-1) s**(-2)
# E&M
mu0_val = 1.2566370614*10**(-6)*kg*m/s**2/A**2 # N/A**2=kg m/s**2/A**2
# A**2 s**4 kg**-1 m**-3
eps0_val = 8.854187817620*10**(-12)*A**2*s**4/kg/m**3
e_val = 1.6021766208*10**(-19)*A*s # C
T_val = kg/A/s**2
G_val = 10**(-4)*kg/A/s**2
list_symbol = np.array(
symbols("h, hbar, eV, c, kB, Alfa, GN, mu0, eps0, e, T, G"))
list_val = np.array([h_val, hbar_val, eV_val, c_val, kB_val,
Alfa_val, GN_val, mu0_val, eps0_val, e_val, T_val, G_val])
for ind, symbol in enumerate(list_symbol):
self.symb = self.symb.subs(symbol, list_val[ind])
# update str
self.str = str(self.symb)
# combine powers such as 1/s and 1/s**2
self.symb = parse_expr(self.str)
self.str = str(self.symb)
# # example
# test = SIUnit('hbar/s')
# test()
class NaturalUnit(Unit):
def __init__(self, input):
Unit.__init__(self, input)
# target units
eV = symbols("eV")
# quantum
h_val = 2*np.pi
hbar_val = 1
# consts
c_val = 1
kB_val = 1
mu0_val = 1
eps0_val = 1
J_val = (1.602176565*10**(-19))**(-1) * eV
e_val = np.sqrt(4*np.pi*1/137.035) # at q=0
Alfa_val = 1/137.035 # at q=0
T_val = np.sqrt((1.054571800*10**(-34))**3*(299792458)**3/(1.2566370614 *
10**-6)/(1.602176565*10**-19)**4)*eV**2
G_val = 1e-4*T_val
kg_val = ((299792458)**2/(1.602176565*10**-19))*eV
s_val = ((1.602176565*10**-19)/(1.054571800*10**-34))*eV**-1
m_val = ((1.602176565*10**-19)/(1.054571800*10**-34)/(
299792458))*eV**-1
cm_val = 10**-2*((1.602176565*10**-19)/(1.054571800*10**-34)/(
299792458))*eV**-1
GN_val = (6.67408*10**-11) *\
((1.602176565*10**-19)/(1.054571800*10**-34)/(299792458))**3 /\
((299792458)**2/(1.602176565*10**-19)) / \
((1.602176565*10**-19)/(1.054571800*10**-34))**2*eV**-2
AlphaMZ_val = 1/127.950
GF_val = 1.1663787*10**(-5)*10**(-18)*eV**(-2)
K_val = (11604.52)**(-1)*eV
A_val = 1244.06*eV
# order of mag
# length
fm_val = 1e-15 * m_val
nm_val = 1e-9 * m_val
cm_val = 1e-2 * m_val
km_val = 1000 * m_val
au_val = 149597870700*m_val
ly_val = 9.4607*10**15*m_val
pc_val = 3.0857*10**16*m_val
kpc_val = 3.0857*10**19*m_val
Mpc_val = 3.0857*10**22*m_val
Gpc_val = 3.0857*10**25*m_val
year_val = 365.25*24*60*60 * s_val
# eV
keV_val = 1e3 * eV
MeV_val = 1e6 * eV
GeV_val = 1e9 * eV
TeV_val = 1e12 * eV
# phys quantities
# astro
Rsun_val = 6.96*10**8 * m_val
Msun_val = 1.98855*10**30*kg_val
RsgrA_val = 17.*Rsun_val
MsgrA_val = 4e6 * Msun_val
Rearth_val = 6371*10**3*m_val
Mearth_val = 5.97237*10**24*kg_val
# particle
sw_val = np.sqrt(0.2386)
cosCabibbo2_val = 0.9746 # +/- 0.0008 astro - ph/0302055
mproton_val = 938.2720813*10**6 * eV # Wiki
mneutron_val = 939.5654133*10**6 * eV # Wiki
melectron_val = 0.511*10**6 * eV
mmuon_val = 105.65837*10**6 * eV
mpi0_val = 134.977*10**6 * eV # neutral pion mass
mpiplus_val = 139.57061 * 10**6 * eV # pi plus mass
mk0_val = 497.611*10**6 * eV # Kaon zero
vev_val = 246221000000 * eV
Mz_val = 91187600000 * eV
NA_val = 6.022*10**23 / symbols('mol') # Avogadro
Mplr_val = 2.435*10**18*10**9 * eV # Reduced
Mpl_val = 1.220910*10**19*10**9 * eV
barn_val = 10**-24 * cm_val**2
# cosmology
Om_m_val = 0.308
Om_L_val = 0.692
Om_b_val = 0.04842
Om_c_val = 0.2580
# aquired by integrating 2.726K black body c.f. Hubble_BAO.nb for example
Om_g_val = 0.0000538357
Om_nu_val = 3.4*10**-5
h0_val = 0.678
H0_val = 67.8*10**3*m_val/s_val/(3.0857e22 * m_val) # arXiv:1502.01589
# 3H0**2/(8\[Pi]*GN)/.physQuantity/.physSI2Natural*)
rho_c_val = 3.721623621707084e-11 * (eV**4)
# first round of sub
list_symbol = np.array(symbols("h, hbar, c, kB, mu0, eps0, J, e, Alfa,\
T, G, kg, s, m, cm, GN, AlphaMZ, GF, K, A, fm, nm,\
cm, km, au, ly, pc, kpc, Mpc, Gpc, year,\
keV, MeV, GeV, TeV"))
list_val = np.array([h_val, hbar_val, c_val, kB_val, mu0_val, eps0_val, J_val, e_val, Alfa_val,
T_val, G_val, kg_val, s_val, m_val, cm_val, GN_val, AlphaMZ_val, GF_val, K_val, A_val, fm_val, nm_val,
cm_val, km_val, au_val, ly_val, pc_val, kpc_val, Mpc_val, Gpc_val, year_val,
keV_val, MeV_val, GeV_val, TeV_val])
for ind, symbol in enumerate(list_symbol):
self.symb = self.symb.subs(symbol, list_val[ind])
# second round of sub
list_symbol = np.array(symbols("Rsun,Msun,RsgrA,MsgrA,Rearth,Mearth,sw,\
cosCabibbo2,mproton,mneutron,melectron,mmuon,\
mpi0,mpiplus,mk0,vev,Mz,NA,Mplr,Mpl,\
barn,Om_m,Om_L,Om_b,Om_c,Om_g,Om_nu,h0,\
H0,rho_c"))
list_val = np.array([Rsun_val, Msun_val, RsgrA_val, MsgrA_val, Rearth_val, Mearth_val, sw_val,
cosCabibbo2_val, mproton_val, mneutron_val, melectron_val, mmuon_val,
mpi0_val, mpiplus_val, mk0_val, vev_val, Mz_val, NA_val, Mplr_val, Mpl_val,
barn_val, Om_m_val, Om_L_val, Om_b_val, Om_c_val, Om_g_val, Om_nu_val, h0_val,
H0_val, rho_c_val])
for ind, symbol in enumerate(list_symbol):
self.symb = self.symb.subs(symbol, list_val[ind])
# update str
self.str = str(self.symb)
# combine powers such as 1/eV and 1/eV**2
self.symb = parse_expr(self.str)
self.str = str(self.symb)
# number form for dim-less quant
try:
self.val = float(self.str)
except:
self.val = self.str
def mass(self):
return self.symb.subs(symbols('eV'), symbols('eV')/symbols('c')**2)
def mom(self):
return self.symb.subs(symbols('eV'), symbols('eV')/symbols('c'))
def T(self):
return self.symb.subs(symbols('eV'), symbols('eV')/symbols('kB'))
def time(self):
return self.symb.subs(symbols('eV'), symbols('eV')/symbols('hbar'))
def length(self):
return self.symb.subs(symbols('eV'), symbols('eV')/symbols('hbar')/symbols('c'))
def power(self):
return self.symb.subs(symbols('eV'), symbols('eV')/(symbols('hbar'))**(1./2.))
def GeV(self):
return self.symb.subs(symbols('eV'), symbols('GeV')/1e9)
def Mpl(self):
return self.symb.subs(symbols('eV'), symbols('Mpl')*8.19061192061659e-29)
def Mpc(self):
return self.symb.subs(symbols('eV'), symbols('Mpc')**-1. * 1.56374962590552e29)
# # # example for testing
# test = NaturalUnit('c*year')
# test()
# # str(test.mass())
# test2 = SIUnit(test)
# test3 = NaturalUnit(test2)
# print test3()
# print SIUnit(test3.length())()
# print SIUnit(test3.mass())()
# print SIUnit(test3.T())()
# print SIUnit(test3.mom())()
# print SIUnit(test3.time())()
# print NaturalUnit(SIUnit(test3.power())())
# print SIUnit(test3.power())
# print test3.GeV()
# print test3.Mpc()
# print test3.Mpl()
# NaturalUnit('Mpl').Mpl()
# should give
# 4.79444331506341e+22/eV
# 9.46073047258078e+15*m
# 2.68948557400311e+58/kg
# 4.13153032678779e+18/K
# 8.9711582204083e+49*s/(kg*m)
# 31557599.9999999*s
# 4.79444331506341e+22*eV**(-0.5)*(1/eV)**0.5
# 3.07302356212126e+24*kg**(-0.5)*m**(-1.0)*s**1.5
# 4.79444331506341e+31/GeV
# 3.06599166237184e-7*Mpc**1.0
# 5.85358378779407e+50/Mpl
# JavaScript: 1.0 Mpl