-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_data_m.m
125 lines (100 loc) · 3.95 KB
/
plot_data_m.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
% Plot the data
% dataCliff array is indexed as follows: dataCliff(samples,idx,numQ,etaPower)
% This stores the Frobenius norm of the error of the reconstructed Choi
% matrix
% samples = # of measurement settings (also called m)
% idx = points to a specific run of the numerical simulation
% numQ = number of qubits
% etaPower = -log_{10}(noise strength)
clear
% load('run0x')
load('./Cliff_m01/dataBerlin.mat');
% load('./Haar_m01/dataBerlin.mat');
% reps = jobs(j,2)-1;
dataCliff = squeeze( data.frob_norm(:,1:reps,:,:) );
optval = squeeze( data.cvx_optval(:,1:reps,:,:) );
cvxReps = squeeze( data.cvxReps(:,1:reps,:,:) );
%check precision decreas and failures
n_fails = squeeze(sum(isnan(optval),2));
display([ num2str(sum(n_fails(:))), ' fails out of ', num2str(length(optval(:))) ]);
n_runs = length( cvxReps(:));
n_reps = sum(cvxReps(:));
display([num2str( n_reps ) ' runs to solve ' num2str( n_runs ) ' SDPs, i.e., '...
'machine precision ' num2str(n_reps-n_runs) ' times increased']);
% COMPUTE AVERAGES AND STANDARD DEVIATIONS OF THE ERRORS:
% set non-converged points to nan:
% dataCliff(isnan(optval)) = nan;
% Truncate error values that are > 1
dataCliffTrunc = min(dataCliff, 1);
numQ=3;
% For j = 1:length(samples), the j'th data point will correspond to the
% simulation where the number of samples was samples(j)
% Exclude those simulation runs that have fewer than 201 samples
samples = m_list;
% Calculate the averages and standard deviations of the errors
% Call these Delta and Sigma
% Along the way, we calculate the 2nd moments of the errors -- call this Tmp2
% They are indexed like this: Delta(j, numQ, etaPower)
num_trials = size( dataCliffTrunc, 2);
% AVERAGE
Delta = squeeze( mean( dataCliffTrunc, 2, 'omitnan') );
% STANDARD DEVIATION
Sigma = squeeze( std(dataCliffTrunc, 0, 2, 'omitnan') );
% Calculate upper and lower bounds on Delta, for the error bars
Upper = Delta + Sigma;
Lower = max(Delta - Sigma, 10^(-15) );
% FIRST SET OF PLOTS:
% Fix the number of qubits
% How does Delta scale with the number of measurement settings, and the noise strength?
% Make a log-log plot
% Note, Matlab's loglog() function cannot draw error bars, so instead we
% rescale the data by hand and then use the errorbar() function to plot it.
% Note, I think a log2 plot is easier to read than log10, since within the
% range of our data, there are more integer powers of 2 than there are
% integer powers of 10.
%for numQ = 3
fig1 = figure(1);
% errorbar() draws one line for each column of the data matrix
EBX = kron([1,1,1], log10(samples)'); % X coordinates
EBY = log10(Delta); % Y coordinates
EBL = EBY - log10(pos(Lower)); % Deviation below EBY
EBU = log10(Upper) - EBY; % Deviation above EBY
errorbar(EBX, EBY, EBL, EBU)
xlim([2.15 3.35]);
ylim([-4,0.2]);
% plot(log2(samples), log2(Delta(:,numQ,1)), '-o', ...
% log2(samples), log2(Delta(:,numQ,2)), '-o', ...
% log2(samples), log2(Delta(:,numQ,3)), '-o');
FigTitle = ['\Delta(m) averaged over ', num2str(reps), ' realizations: '...
, num2str(numQ), ', qubits'];
title(FigTitle);
xlabel(texlabel('log_10(m)'))
ylabel(texlabel('log_10(Delta)'))
legend([texlabel('eta = '), num2str(eta_list(1))], ...
[texlabel('eta = '), num2str(eta_list(2))], ...
[texlabel('eta = '), num2str(eta_list(3))], ...
'Location', 'Best')
name1 = 'Delta(m)_3qubits_SDPT3';
saveas(fig1, [name1, '.png']);
savefig(fig1, name1);
% % SECOND PLOT: non-log
ebx = kron([1,1,1], samples');
fig2 = figure(2);
errorbar(ebx, Delta, Sigma);
xlim([100 2100]);
% ylim([0,0.1]);
title(FigTitle)
xlabel(texlabel('m'))
ylabel(texlabel('Delta'))
legend([texlabel('eta = '), num2str(eta_list(1))], ...
[texlabel('eta = '), num2str(eta_list(2))], ...
[texlabel('eta = '), num2str(eta_list(3))], ...
'Location', 'Best')
name2 = 'Delta(m)_3qubits_SDPT3_non-log';
saveas(fig2, [name2, '.png']);
savefig(fig2, name2);
figure;
i = 1;
im1 = 20;
im2 = 43;
errorbar(EBX(im1:im2,i), EBY(im1:im2,i), EBL(im1:im2,i), EBU(im1:im2,i))