diff --git a/erasure-plugin/theories/ETransform.v b/erasure-plugin/theories/ETransform.v index 3af3e47a8..06a08372a 100644 --- a/erasure-plugin/theories/ETransform.v +++ b/erasure-plugin/theories/ETransform.v @@ -976,7 +976,7 @@ Program Definition coinductive_to_inductive_transformation (efl : EEnvFlags) {has_cstrblocks : cstr_as_blocks = true} : Transform.t _ _ EAst.term EAst.term _ _ (eval_eprogram_env block_wcbv_flags) (eval_eprogram block_wcbv_flags) := - {| name := "transforming co-inductive to inductive types"; + {| name := "transforming co-inductive to lazy inductive types"; transform p _ := ECoInductiveToInductive.trans_program p ; pre p := wf_eprogram_env efl p ; post p := wf_eprogram efl p ; diff --git a/erasure/theories/EAstUtils.v b/erasure/theories/EAstUtils.v index de7c2655c..4f3403da3 100644 --- a/erasure/theories/EAstUtils.v +++ b/erasure/theories/EAstUtils.v @@ -318,9 +318,16 @@ Definition is_box c := | _ => false end. +Definition isLazy c := + match c with + | tLazy _ => true + | _ => false + end. + Definition isFixApp t := isFix (head t). Definition isConstructApp t := isConstruct (head t). Definition isPrimApp t := isPrim (head t). +Definition isLazyApp t := isLazy (head t). Lemma isFixApp_mkApps f l : isFixApp (mkApps f l) = isFixApp f. Proof. rewrite /isFixApp head_mkApps //. Qed. @@ -328,6 +335,8 @@ Lemma isConstructApp_mkApps f l : isConstructApp (mkApps f l) = isConstructApp f Proof. rewrite /isConstructApp head_mkApps //. Qed. Lemma isPrimApp_mkApps f l : isPrimApp (mkApps f l) = isPrimApp f. Proof. rewrite /isPrimApp head_mkApps //. Qed. +Lemma isLazyApp_mkApps f l : isLazyApp (mkApps f l) = isLazyApp f. +Proof. rewrite /isLazyApp head_mkApps //. Qed. Lemma is_box_mkApps f a : is_box (mkApps f a) = is_box f. Proof. @@ -347,6 +356,8 @@ Lemma nisBox_mkApps f args : ~~ isBox f -> ~~ isBox (mkApps f args). Proof. destruct args using rev_case => //. rewrite mkApps_app /= //. Qed. Lemma nisPrim_mkApps f args : ~~ isPrim f -> ~~ isPrim (mkApps f args). Proof. destruct args using rev_case => //. rewrite mkApps_app /= //. Qed. +Lemma nisLazy_mkApps f args : ~~ isLazy f -> ~~ isLazy (mkApps f args). +Proof. destruct args using rev_case => //. rewrite mkApps_app /= //. Qed. Definition string_of_def {A : Set} (f : A -> string) (def : def A) := "(" ^ string_of_name (dname def) ^ "," ^ f (dbody def) ^ "," diff --git a/erasure/theories/EConstructorsAsBlocks.v b/erasure/theories/EConstructorsAsBlocks.v index 0032bef87..c4453bbae 100644 --- a/erasure/theories/EConstructorsAsBlocks.v +++ b/erasure/theories/EConstructorsAsBlocks.v @@ -649,6 +649,28 @@ Proof. eapply IHt1. cbn in Hwf'. rtoProp. intuition. Qed. +Lemma transform_blocks_isLazyApp {efl : EEnvFlags} {Σ : GlobalContextMap.t} t : + has_cstr_params = false -> + wf_glob Σ -> wellformed Σ 0 t -> + isLazyApp (transform_blocks Σ t) = isLazyApp t. +Proof. + intros haspars Hwf Hwf'. + induction t; try now cbn; eauto. + eapply transform_blocks_tApp; eauto. + destruct decompose_app. + destruct construct_viewc. + - rewrite GlobalContextMap.lookup_constructor_pars_args_spec. + destruct lookup_constructor_pars_args as [ [[]] | ]; eauto. + cbn. destruct chop. intros (? & ? & ?). subst. + rewrite -[tApp _ _](mkApps_app _ _ [t2]). + rewrite !isLazyApp_mkApps. cbn. reflexivity. + - change (tApp t1 t2) with (mkApps t1 [t2]). + change (tApp (transform_blocks Σ t1) (transform_blocks Σ t2)) with + (mkApps (transform_blocks Σ t1) [transform_blocks Σ t2]). + rewrite !isLazyApp_mkApps. + eapply IHt1. cbn in Hwf'. rtoProp. intuition. +Qed. + Lemma lookup_env_transform_blocks {Σ : GlobalContextMap.t} kn : lookup_env (transform_blocks_env Σ) kn = option_map (transform_blocks_decl Σ) (lookup_env Σ kn). @@ -1125,17 +1147,20 @@ Proof. * rewrite GlobalContextMap.lookup_constructor_pars_args_spec; destruct lookup_constructor_pars_args as [ [[]] | ] eqn:hpa; eauto. cbn [plus]. destruct chop eqn:heqch. - intros [hl [ht ha]]. rewrite ht in H1. rewrite isConstructApp_mkApps isPrimApp_mkApps orb_true_r in H1 => //. + intros [hl [ht ha]]. rewrite ht in H1. rewrite isConstructApp_mkApps + isPrimApp_mkApps isLazyApp_mkApps orb_true_r in H1 => //. * eapply eval_app_cong; eauto. revert H1. destruct f'; try now cbn; tauto. intros H. cbn in H. rewrite transform_blocks_isConstructApp; eauto. rewrite transform_blocks_isPrimApp; eauto. - rewrite negb_or in H. move/andP: H => [] ncstr nprim. + rewrite transform_blocks_isLazyApp; eauto. + rewrite !negb_or in H. move/andP: H => [] /andP [] ncstr nprim nlazy. destruct (isConstructApp (tApp f'1 f'2)) eqn:heq'. -- cbn in ncstr. congruence. - -- eapply transform_blocks_tApp; eauto. clear -nprim. + -- eapply transform_blocks_tApp; eauto. clear -nprim nlazy. + move/negbTE: nlazy ->. move/negbTE: nprim -> => /=. destruct decompose_app. destruct construct_viewc; try now cbn; eauto. rewrite GlobalContextMap.lookup_constructor_pars_args_spec; @@ -1186,6 +1211,11 @@ Proof. eapply All2_over_undep in a. eapply All2_Set_All2 in ev. eapply All2_All2_Set. solve_all. now destruct b. now destruct a0. + - intros evl evt' [evt wft wflt etat etalt]. + intros [evt'' wft' wfv etat' etav]. + simp transform_blocks; rewrite -!transform_blocks_equation_1. + econstructor; eauto. + now simp transform_blocks in evt; rewrite -!transform_blocks_equation_1 in evt. - intros. destruct t; try solve [constructor; cbn in H, H0 |- *; try congruence]. cbn -[lookup_constructor] in H |- *. destruct args => //. destruct lookup_constructor eqn:hl => //. diff --git a/erasure/theories/EDeps.v b/erasure/theories/EDeps.v index b1180b5cc..7bee22452 100644 --- a/erasure/theories/EDeps.v +++ b/erasure/theories/EDeps.v @@ -354,6 +354,7 @@ Proof. - depelim er; depelim X; constructor; eauto. eapply All2_over_undep in a0. solve_all. - easy. + - easy. Qed. #[global] diff --git a/erasure/theories/EEtaExpandedFix.v b/erasure/theories/EEtaExpandedFix.v index a094a3021..f0a877898 100644 --- a/erasure/theories/EEtaExpandedFix.v +++ b/erasure/theories/EEtaExpandedFix.v @@ -1056,7 +1056,7 @@ Lemma eval_etaexp {fl : WcbvFlags} {efl : EEnvFlags} {wcon : with_constructor_as Proof. intros etaΣ wfΣ. induction 1 as [ | ? ? ? ? ? ? ? ? IHs | | | | | ? ? ? ? ? ? ? ? ? ? ? IHs | ? ? ? ? ? ? ? ? ? ? ? IHs - | ? ? ? ? ? ? ? ? ? ? IHs | | | | | | | | | | | ] using eval_mkApps_rect; try now congruence. + | ? ? ? ? ? ? ? ? ? ? IHs | | | | | | | | | | | | ] using eval_mkApps_rect; try now congruence. all:try simp isEtaExp; rewrite -?isEtaExp_equation_1 => //. 6:{ move/isEtaExp_tApp'. @@ -1375,6 +1375,7 @@ Proof. - solve_all. depelim X; solve_all. eapply All2_over_undep in a. subst a0 a'; depelim H; constructor; solve_all. solve_all. + - simp_eta in IHeval1. eauto. Qed. Lemma isEtaExp_fixapp_mon {mfix idx n n'} : n <= n' -> isEtaExp_fixapp mfix idx n -> isEtaExp_fixapp mfix idx n'. @@ -1961,6 +1962,8 @@ Proof. - intros hexp. simp_eta in hexp. depelim X; repeat constructor; eauto. eapply All2_over_undep in a. subst a0 a'. solve_all. depelim hexp; cbn in *. destruct p. eapply All2_All2_Set. solve_all. solve_all. depelim hexp. destruct p. solve_all. + - intros hexp. simp_eta in hexp. econstructor; eauto. apply IHeval2. + specialize (IHeval1 hexp). eapply eval_etaexp in IHeval1. now simp_eta in IHeval1. all:eauto. - intros hexp. now eapply eval_atom. Unshelve. all: eauto. Qed. diff --git a/erasure/theories/EImplementBox.v b/erasure/theories/EImplementBox.v index 99deb0a5f..0817566d3 100644 --- a/erasure/theories/EImplementBox.v +++ b/erasure/theories/EImplementBox.v @@ -388,6 +388,15 @@ Proof. rewrite (isPrimApp_mkApps _ [_]). eauto. Qed. +Lemma implement_box_isLazyApp {efl : EEnvFlags} {Σ : global_declarations} t : + isLazyApp (implement_box t) = isLazyApp t. +Proof. + induction t; try now cbn; eauto. + simp implement_box. + rewrite (isLazyApp_mkApps _ [t2]). + rewrite (isLazyApp_mkApps _ [_]). eauto. +Qed. + Lemma lookup_env_implement_box {Σ : global_declarations} kn : lookup_env (implement_box_env Σ) kn = option_map (implement_box_decl) (lookup_env Σ kn). @@ -670,6 +679,7 @@ Proof. intros H. cbn in H. rewrite implement_box_isConstructApp; eauto. rewrite implement_box_isPrimApp; eauto. + rewrite implement_box_isLazyApp; eauto. - intros; repeat match goal with [H : MCProd.and3 _ _ _ |- _] => destruct H end. simp implement_box in *. eapply eval_construct_block; tea. eauto. @@ -680,6 +690,9 @@ Proof. - intros wf H; depelim H; simp implement_box; repeat constructor. destruct a0. eapply All2_over_undep in a. eapply All2_All2_Set, All2_map. cbn -[implement_box]. solve_all. now destruct H. now destruct a0. + - intros evt evt' [] []. + simp implement_box. simp implement_box in e. + econstructor; eauto. - intros. destruct t; try solve [constructor; cbn in H, H0 |- *; try congruence]. cbn -[lookup_constructor] in H |- *. destruct args => //. Qed. diff --git a/erasure/theories/EInlineProjections.v b/erasure/theories/EInlineProjections.v index a37b97ae7..302b57bc3 100644 --- a/erasure/theories/EInlineProjections.v +++ b/erasure/theories/EInlineProjections.v @@ -710,13 +710,14 @@ Proof. * destruct with_guarded_fix. + move: i. rewrite !negb_or. - rewrite optimize_mkApps !isFixApp_mkApps !isConstructApp_mkApps !isPrimApp_mkApps. + rewrite optimize_mkApps !isFixApp_mkApps !isConstructApp_mkApps !isPrimApp_mkApps + !isLazyApp_mkApps. destruct args using rev_case => // /=. rewrite map_app !mkApps_app /= //. rewrite !andb_true_r. rtoProp; intuition auto; destruct v => /= //. + move: i. rewrite !negb_or. - rewrite optimize_mkApps !isConstructApp_mkApps !isPrimApp_mkApps. + rewrite optimize_mkApps !isConstructApp_mkApps !isPrimApp_mkApps !isLazyApp_mkApps. destruct args using rev_case => // /=. rewrite map_app !mkApps_app /= //. destruct v => /= //. - intros; rtoProp; intuition eauto. @@ -725,6 +726,8 @@ Proof. eapply All2_Set_All2 in ev. eapply All2_All2_Set. primProp. subst a0 a'; cbn in *. depelim H0; cbn in *. intuition auto; solve_all. primProp; depelim H0; intuition eauto. + - intros wf; econstructor; eauto. eapply IHev2. + eapply eval_wellformed in ev1; tea => //. - destruct t => //. all:constructor; eauto. cbn [atom optimize] in i |- *. diff --git a/erasure/theories/EOptimizePropDiscr.v b/erasure/theories/EOptimizePropDiscr.v index 211562f18..449e36dc8 100644 --- a/erasure/theories/EOptimizePropDiscr.v +++ b/erasure/theories/EOptimizePropDiscr.v @@ -715,22 +715,24 @@ Proof. * destruct with_guarded_fix. + move: i. rewrite !negb_or. - rewrite remove_match_on_box_mkApps !isFixApp_mkApps !isConstructApp_mkApps !isPrimApp_mkApps. + rewrite remove_match_on_box_mkApps !isFixApp_mkApps !isConstructApp_mkApps !isPrimApp_mkApps !isLazyApp_mkApps. destruct args using rev_case => // /=. rewrite map_app !mkApps_app /= //. rewrite !andb_true_r. rtoProp; intuition auto. destruct v => /= //. destruct v => /= //. destruct v => /= //. + destruct v => /= //. + move: i. rewrite !negb_or. - rewrite remove_match_on_box_mkApps !isConstructApp_mkApps !isPrimApp_mkApps. + rewrite remove_match_on_box_mkApps !isConstructApp_mkApps !isPrimApp_mkApps !isLazyApp_mkApps. destruct args using rev_case => // /=. rewrite map_app !mkApps_app /= //. destruct v => /= //. - depelim X; repeat constructor. eapply All2_over_undep in a. eapply All2_All2_Set. eapply All2_Set_All2 in ev. subst a0 a'; cbn in *. rewrite /test_array_model /= in H. rtoProp; intuition auto; solve_all. eapply e. cbn in H. rewrite /test_array_model /= in H. now move/andP: H => []. + - intros. econstructor; eauto. eapply IHev2. eapply eval_closed in ev1; tea. - destruct t => //. all:constructor; eauto. cbn [atom remove_match_on_box] in i |- *. rewrite -lookup_constructor_remove_match_on_box //. destruct args => //. diff --git a/erasure/theories/ERemoveParams.v b/erasure/theories/ERemoveParams.v index c58d9e5d9..9780299a8 100644 --- a/erasure/theories/ERemoveParams.v +++ b/erasure/theories/ERemoveParams.v @@ -779,6 +779,14 @@ Proof. all:rewrite !isPrimApp_mkApps //. Qed. +Lemma strip_isLazyApp Σ f : + isLazyApp f = isLazyApp (strip Σ f). +Proof. + funelim (strip Σ f); cbn -[strip] => //. + all:rewrite map_InP_spec. + all:rewrite !isLazyApp_mkApps //. +Qed. + Lemma lookup_inductive_pars_is_prop_and_pars {Σ ind b pars} : inductive_isprop_and_pars Σ ind = Some (b, pars) -> lookup_inductive_pars Σ (inductive_mind ind) = Some pars. @@ -1011,8 +1019,8 @@ Proof. - rewrite !strip_tApp //. eapply eval_app_cong; tea. move: H1. eapply contraNN. - rewrite -strip_isLambda -strip_isConstructApp -strip_isFixApp -strip_isBox -strip_isPrimApp //. - rewrite -strip_isFix //. + rewrite -strip_isLambda -strip_isConstructApp -strip_isFixApp -strip_isBox -strip_isPrimApp + -strip_isLazyApp // -strip_isFix //. - rewrite !strip_mkApps // /=. rewrite (lookup_constructor_lookup_inductive_pars H). @@ -1030,6 +1038,8 @@ Proof. eapply All2_over_undep in a. eapply All2_Set_All2 in ev. eapply All2_All2_Set. solve_all. now destruct b. now destruct a0. + - simp_strip. simp_strip in e0. econstructor; tea. + - destruct t => //. all:constructor; eauto. simp strip. cbn [atom strip] in H |- *. diff --git a/erasure/theories/EWcbvEval.v b/erasure/theories/EWcbvEval.v index 7cd775a2a..6a6d78968 100644 --- a/erasure/theories/EWcbvEval.v +++ b/erasure/theories/EWcbvEval.v @@ -38,6 +38,7 @@ Definition atom `{wfl : WcbvFlags} Σ t := | tBox | tCoFix _ _ | tLambda _ _ + | tLazy _ | tFix _ _ => true | tConstruct ind c [] => negb with_constructor_as_block && isSome (lookup_constructor Σ ind c) | _ => false @@ -258,7 +259,7 @@ Section Wcbv. | eval_app_cong f f' a a' : eval f f' -> ~~ (isLambda f' || (if with_guarded_fix then isFixApp f' else isFix f') || isBox f' || isConstructApp f' - || isPrimApp f') -> + || isPrimApp f' || isLazyApp f') -> eval a a' -> eval (tApp f a) (tApp f' a') @@ -272,13 +273,12 @@ Section Wcbv. eval_primitive eval p p' -> eval (tPrim p) (tPrim p') - (* - | eval_lazy : eval (tLazy t) (tLazy t) - | eval_force t v v' : eval t (tLazy v) -> + | eval_force t v v' : + eval t (tLazy v) -> eval v v' -> - eval (tForce t) v' *) + eval (tForce t) v' - (** Atoms are values (includes abstractions, cofixpoints and constructors) *) + (** Atoms are values (includes abstractions, cofixpoints, constructors and lazy) *) | eval_atom t : atom Σ t -> eval t t. Hint Constructors eval : core. @@ -615,7 +615,7 @@ Section eval_rect. isBox f' || isConstructApp f' - || isPrimApp f')) + || isPrimApp f' || isLazyApp f')) (e0 : eval Σ a a'), P a a' e0 → P (tApp f16 a) @@ -626,14 +626,17 @@ Section eval_rect. (forall p p' (ev : eval_primitive (eval Σ) p p'), eval_primitive_ind _ P _ _ ev -> - P (tPrim p) (tPrim p') (eval_prim _ _ _ ev)) + P (tPrim p) (tPrim p') (eval_prim _ _ _ ev)) -> + (forall t t' v (ev1 : eval Σ t (tLazy t')) (ev2 : eval Σ t' v), + P _ _ ev1 -> P _ _ ev2 -> + P (tForce t) v (eval_force _ t t' v ev1 ev2)) - → (∀ (t : term) (i : atom Σ t), + → (∀ (t : term) (i : atom Σ t), P t t (eval_atom Σ t i)) → ∀ (t t0 : term) (e : eval Σ t t0), P t t0 e. Proof using Type. - intros ?????????????????????? H. + intros ??????????????????????? H. revert t t0 H. fix aux 3. move aux at top. @@ -785,6 +788,7 @@ Section Wcbv. + destruct with_guarded_fix. now cbn in i1. now cbn in i1. + constructor. + + now destruct with_guarded_fix; cbn in i1. + cbn in i. destruct with_guarded_fix; cbn in i; rtoProp; intuition auto. * destruct b0 as (ind & c & mdecl & idecl & cdecl & args & [H1 H2 H3 H4]). rewrite -[tApp _ _](mkApps_app _ (firstn n l) [a']). @@ -1058,7 +1062,7 @@ Section Wcbv. rewrite !mkApps_app /=. eapply eval_app_cong; tea. eapply IHargs => //. - rewrite isFixApp_mkApps // /= isConstructApp_mkApps // !negb_or isPrimApp_mkApps. + rewrite isFixApp_mkApps // /= isConstructApp_mkApps // !negb_or isPrimApp_mkApps isLazyApp_mkApps. rtoProp; intuition auto. apply nisLambda_mkApps => //. destruct with_guarded_fix => //; eapply nisFix_mkApps => //. @@ -1304,15 +1308,15 @@ Section Wcbv. cbn in i. rtoProp; intuition auto. + exfalso. rewrite !negb_or in i. specialize (IHev1 _ ev'1); noconf IHev1. cbn in i. rewrite guarded in i. rtoProp; intuition auto. - rewrite isFixApp_mkApps in H3 => //. + rewrite isFixApp_mkApps in H4 => //. + exfalso. rewrite !negb_or in i. specialize (IHev1 _ ev'1); noconf IHev1. cbn in i. rewrite guarded in i. rtoProp; intuition auto. - rewrite isFixApp_mkApps in H3 => //. + rewrite isFixApp_mkApps in H4 => //. + exfalso. rewrite !negb_or in i. specialize (IHev1 _ ev'1); noconf IHev1. cbn in i. rewrite unguarded in i. now cbn in i. + exfalso. rewrite !negb_or in i. specialize (IHev1 _ ev'1); noconf IHev1. cbn in i. rtoProp; intuition auto. - now rewrite isConstructApp_mkApps in H1. + now rewrite isConstructApp_mkApps in H2. + specialize (IHev1 _ ev'1); noconf IHev1. specialize (IHev2 _ ev'2); noconf IHev2. now assert (i0 = i) as -> by now apply uip. @@ -1329,6 +1333,7 @@ Section Wcbv. induction ev in a, ev0 |- *; depelim ev0; eauto. destruct a. f_equal; eauto. specialize (e0 _ e). now noconf e0. + - depelim ev'; go. - depelim ev'; try go. 2: now assert (i0 = i) as -> by now apply uip. exfalso. invs i. rewrite e in H0. destruct args; cbn in H0; invs H0. diff --git a/erasure/theories/EWcbvEvalCstrsAsBlocksFixLambdaInd.v b/erasure/theories/EWcbvEvalCstrsAsBlocksFixLambdaInd.v index dbaed8575..47d73387e 100644 --- a/erasure/theories/EWcbvEvalCstrsAsBlocksFixLambdaInd.v +++ b/erasure/theories/EWcbvEvalCstrsAsBlocksFixLambdaInd.v @@ -334,7 +334,7 @@ Lemma eval_preserve_mkApps_ind : P f11 f' -> (forall t u (ev' : eval Σ t u), eval_depth ev' <= eval_depth ev -> Q 0 t -> P t u) → ~~ (isLambda f' || (if with_guarded_fix then isFixApp f' else isFix f') || isBox f' - || isConstructApp f' || isPrimApp f') → + || isConstructApp f' || isPrimApp f' || isLazyApp f') → eval Σ a a' → P a a' → P' (tApp f11 a) (tApp f' a')) → (∀ ind i mdecl idecl cdecl args args', @@ -349,6 +349,11 @@ Lemma eval_preserve_mkApps_ind : eval_primitive_ind _ (fun x y _ => P x y) _ _ ev -> P' (tPrim p) (tPrim p')) -> + (forall t t' v, eval Σ t (tLazy t') -> eval Σ t' v -> + P t (tLazy t') -> + P t' v -> + P' (tForce t) v) -> + (∀ t : term, atom Σ t → Q 0 t -> P' t t) -> ∀ (t t0 : term), Q 0 t -> eval Σ t t0 → P' t t0. Proof. @@ -359,7 +364,7 @@ Proof. intros. pose proof (p := @Fix_F { t : _ & { t0 : _ & { qt : Q 0 t & eval Σ t t0 }}}). specialize (p (MR lt (fun x => eval_depth x.π2.π2.π2))). - set(foo := existT _ t (existT _ t0 (existT _ X17 H)) : { t : _ & { t0 : _ & { qt : Q 0 t & eval Σ t t0 }}}). + set(foo := existT _ t (existT _ t0 (existT _ X18 H)) : { t : _ & { t0 : _ & { qt : Q 0 t & eval Σ t t0 }}}). change t with (projT1 foo). change t0 with (projT1 (projT2 foo)). revert foo. @@ -369,8 +374,8 @@ Proof. forward p. 2:{ apply p. apply measure_wf, lt_wf. } clear p. - rename X17 into qt. rename X14 into Xcappexp. - rename X15 into Qprim, X16 into Qatom. + rename X18 into qt. rename X14 into Xcappexp. + rename X15 into Qprim, X16 into Qforce, X17 into Qatom. clear t t0 qt H. intros (t & t0 & qt & ev). intros IH. @@ -569,6 +574,15 @@ Proof. + depelim p0. destruct p. eapply and_assum. unshelve eapply IH; tea. cbn; lia. intros; split => //; eapply P'Q; tea. + - eapply qpres in qt; depelim qt => //. + assert (Q 0 (tLazy v)). + { eapply P'Q; tea. eapply (IH _ _ q ev1); tea. now cbn; lia. } + eapply qpres in X14. depelim X14 => //. + eapply Qforce; tea. + + eapply and_assum. eapply (IH _ _ q ev1); eauto; cbn; lia. + intros hp'. split => //. eapply P'Q; tea. + + eapply and_assum. eapply (IH _ _ q0 ev2); eauto; cbn; lia. + intros hp'. split => //. eapply P'Q; tea. - eapply Qatom; tea. Qed. diff --git a/erasure/theories/EWcbvEvalCstrsAsBlocksInd.v b/erasure/theories/EWcbvEvalCstrsAsBlocksInd.v index 158684f81..955c25c0b 100644 --- a/erasure/theories/EWcbvEvalCstrsAsBlocksInd.v +++ b/erasure/theories/EWcbvEvalCstrsAsBlocksInd.v @@ -298,7 +298,7 @@ Lemma eval_preserve_mkApps_ind : P f11 f' -> (forall t u (ev' : eval Σ t u), eval_depth ev' <= eval_depth ev -> Q 0 t -> P t u) → ~~ (isLambda f' || (if with_guarded_fix then isFixApp f' else isFix f') || isBox f' - || isConstructApp f' || isPrimApp f') → + || isConstructApp f' || isPrimApp f' || isLazyApp f') → eval Σ a a' → P a a' → P' (tApp f11 a) (tApp f' a')) → (∀ ind i mdecl idecl cdecl args args', @@ -313,6 +313,11 @@ Lemma eval_preserve_mkApps_ind : eval_primitive_ind _ (fun x y _ => P x y) _ _ ev -> P' (tPrim p) (tPrim p')) -> + (forall t t' v, eval Σ t (tLazy t') -> eval Σ t' v -> + P t (tLazy t') -> + P t' v -> + P' (tForce t) v) -> + (∀ t : term, atom Σ t → Q 0 t -> P' t t) -> ∀ (t t0 : term), Q 0 t -> eval Σ t t0 → P' t t0. Proof. @@ -322,7 +327,7 @@ Proof. intros. pose proof (p := @Fix_F { t : _ & { t0 : _ & { qt : Q 0 t & eval Σ t t0 }}}). specialize (p (MR lt (fun x => eval_depth x.π2.π2.π2))). - set(foo := existT _ t (existT _ t0 (existT _ X16 H)) : { t : _ & { t0 : _ & { qt : Q 0 t & eval Σ t t0 }}}). + set(foo := existT _ t (existT _ t0 (existT _ X17 H)) : { t : _ & { t0 : _ & { qt : Q 0 t & eval Σ t t0 }}}). change t with (projT1 foo). change t0 with (projT1 (projT2 foo)). revert foo. @@ -332,8 +337,8 @@ Proof. forward p. 2:{ apply p. apply measure_wf, lt_wf. } clear p. - rename X16 into qt. rename X13 into Xcappexp. - rename X14 into Qprim, X15 into Qatom. + rename X17 into qt. rename X13 into Xcappexp. + rename X14 into Qprim, X15 into Qforce, X16 into Qatom. clear t t0 qt H. intros (t & t0 & qt & ev). intros IH. @@ -356,7 +361,7 @@ Proof. Ltac myt hyp anda P'Q := eapply hyp; tea; (apply and_assum; [ih|hp' P'Q]). destruct ev. - 1-18:eapply qpres in qt as qt'; depelim qt' => //. + 1-19:eapply qpres in qt as qt'; depelim qt' => //. all:try congruence. - eapply X; tea; (apply and_assum; [ih|hp' P'Q]). - assert (ql : Q 0 (tLambda na b)). @@ -468,6 +473,15 @@ Proof. + depelim p0. destruct p. eapply and_assum. unshelve eapply IH; tea. cbn; lia. intros; split => //; eapply P'Q; tea. + - eapply qpres in qt; depelim qt => //. + assert (Q 0 (tLazy v)). + { eapply P'Q; tea. eapply (IH _ _ q ev1); tea. now cbn; lia. } + eapply qpres in X13. depelim X13 => //. + eapply Qforce; tea. + + eapply and_assum. eapply (IH _ _ q ev1); eauto; cbn; lia. + intros hp'. split => //. eapply P'Q; tea. + + eapply and_assum. eapply (IH _ _ q0 ev2); eauto; cbn; lia. + intros hp'. split => //. eapply P'Q; tea. - eapply Qatom; tea. Qed. diff --git a/erasure/theories/EWcbvEvalEtaInd.v b/erasure/theories/EWcbvEvalEtaInd.v index f2058f16f..442a7ee29 100644 --- a/erasure/theories/EWcbvEvalEtaInd.v +++ b/erasure/theories/EWcbvEvalEtaInd.v @@ -308,7 +308,7 @@ Lemma eval_preserve_mkApps_ind : P f11 f' -> (forall t u (ev' : eval Σ t u), eval_depth ev' <= eval_depth ev -> Q 0 t -> isEtaExp Σ t -> P t u) → ~~ (isLambda f' || (if with_guarded_fix then isFixApp f' else isFix f') || isBox f' || isConstructApp f' || - isPrimApp f') → + isPrimApp f' || isLazyApp f') → eval Σ a a' → P a a' → isEtaExp Σ (tApp f' a') -> P' (tApp f11 a) (tApp f' a')) → @@ -326,11 +326,10 @@ Lemma eval_preserve_mkApps_ind : eval_primitive_ind _ (fun x y _ => P x y) _ _ ev -> P' (tPrim p) (tPrim p')) -> - (* (forall t t', eval Σ t t' -> Q 0 t -> Q 0 t' -> P t t' -> - P' (tLazy t) (tLazy t')) -> - - (forall t t', eval Σ t t' -> Q 0 t -> Q 0 t' -> P t t' -> - P' (tForce t) (tForce t')) -> *) + (forall t t' v, eval Σ t (tLazy t') -> eval Σ t' v -> + P t (tLazy t') -> + P t' v -> + P' (tForce t) v) -> (∀ t : term, atom Σ t → Q 0 t -> isEtaExp Σ t -> P' t t) -> ∀ (t t0 : term), Q 0 t -> isEtaExp Σ t -> eval Σ t t0 → P' t t0. @@ -339,10 +338,10 @@ Proof. assert (qfixs: Qfixs Q) by tc. assert (qcofixs: Qcofixs Q) by tc. intros. - enough (P' t t0 × isEtaExp Σ t0). apply X17. + enough (P' t t0 × isEtaExp Σ t0). apply X18. pose proof (p := @Fix_F { t : _ & { t0 : _ & { qt : Q 0 t & eval Σ t t0 }}}). specialize (p (MR lt (fun x => eval_depth x.π2.π2.π2))). - set(foo := existT _ t (existT _ t0 (existT _ X16 H0)) : { t : _ & { t0 : _ & { qt : Q 0 t & eval Σ t t0 }}}). + set(foo := existT _ t (existT _ t0 (existT _ X17 H0)) : { t : _ & { t0 : _ & { qt : Q 0 t & eval Σ t t0 }}}). move: H. change t with (projT1 foo). change t0 with (projT1 (projT2 foo)). @@ -354,8 +353,9 @@ Proof. forward p. 2:{ apply p. apply measure_wf, lt_wf. } clear p. - rename X16 into qt. rename X13 into Xcappexp. - rename X14 into Qprim. rename X15 into Qatom. + rename X17 into qt. rename X13 into Xcappexp. + rename X14 into Qprim. rename X15 into Qforce. + rename X16 into Qatom. clear t t0 qt H0. intros (t & t0 & qt & ev). intros IH. @@ -381,7 +381,7 @@ Proof. eapply H; tea; (apply and_assum; [ih|hp' P'Q]) end. destruct ev. - 1-18:eapply qpres in qt as qt'; depelim qt' => //. + 1-19:eapply qpres in qt as qt'; depelim qt' => //. - move/isEtaExp_tApp. destruct decompose_app as [hd args] eqn:da. destruct (construct_viewc hd) eqn:cv. @@ -698,29 +698,44 @@ Proof. split; simp_eta. unshelve eapply Qprim. constructor; eauto. constructor. + apply All2_over_undep. cbn in IH. ELiftSubst.solve_all. - depelim H. destruct p as [[] ?]. + depelim H0. destruct p as [[] a0]. clear -ev IH a0 P'Q and_assum. cbn in a0. subst a; cbn in *. induction ev; constructor; eauto. - ** depelim a0. destruct p as []. + ** depelim a0. destruct p as [? []]. eapply and_assum. unshelve eapply IH; tea. cbn. lia. intros []. split => //. split => //. eapply P'Q; tea. ** depelim a0. intuition eauto. eapply IHev; intros. 2:eauto. unshelve eapply IH; tea. cbn; lia. - + ELiftSubst.solve_all. depelim H; destruct p as [[] ?]. + + ELiftSubst.solve_all. depelim H0. destruct p as [[? []] ?]. eapply and_assum. unshelve eapply IH; tea. cbn; lia. intros []; split => //; split => //. eapply P'Q; tea. + ELiftSubst.solve_all. subst a a'; cbn in *. - depelim H; constructor; cbn in *; intuition eauto. + depelim H0; constructor; cbn in *; intuition eauto. unshelve eapply IH. 2:tea. all:eauto. cbn; lia. clear -ev IH b P'Q and_assum. cbn in b. induction ev; constructor; eauto. - ** depelim b. destruct p. unshelve eapply IH. 2:tea. all:eauto. cbn. lia. + ** depelim b. destruct p as [? []]. unshelve eapply IH. 2:tea. all:eauto. cbn. lia. ** depelim b. intuition eauto. eapply IHev; intros. 2:eauto. unshelve eapply IH; tea. cbn; lia. - - intros ise. split => //. eapply Qatom; tea. + - simp_eta => ise. + eapply Qpres in qt. depelim qt => //. + assert (Q 0 (tLazy v)). + { eapply P'Q; tea. eapply (IH _ _ q ev1); tea. now cbn; lia. } + eapply qpres in X13. depelim X13 => //. + assert (isEtaExp Σ (tLazy v)) as etav. + { eapply (IH _ _ q ev1); tea. now cbn; lia. } + simp_eta in etav. + split. + + unshelve eapply Qforce. 2:tea. auto. + eapply and_assum. eapply (IH _ _ q ev1); tea. now cbn; lia. + intros []. split => //. split => //. eapply P'Q; tea. + pose proof (IH _ _ q ev1). forward X13. cbn; lia. specialize (X13 ise) as []. + eapply and_assum. eapply (IH _ _ q0 ev2); tea. now cbn; lia. + now simp_eta in i1. + + eapply (IH _ _ q0 ev2) => //. now cbn; lia. + - intros ise. split => //. eapply Qatom; tea. Qed. - From MetaCoq.Erasure Require Import ELiftSubst. Lemma Qpreserves_wellformed (efl : EEnvFlags) Σ : cstr_as_blocks = false -> diff --git a/erasure/theories/EWcbvEvalInd.v b/erasure/theories/EWcbvEvalInd.v index 05328f1ef..8e0f365b2 100644 --- a/erasure/theories/EWcbvEvalInd.v +++ b/erasure/theories/EWcbvEvalInd.v @@ -238,7 +238,7 @@ Section eval_mkApps_rect. then isFixApp f' else isFix f') || isBox f' || - isConstructApp f' || isPrimApp f')) + isConstructApp f' || isPrimApp f' || isLazyApp f')) (e0 : eval Σ a a'), P a a' → P (tApp f15 a) @@ -246,12 +246,15 @@ Section eval_mkApps_rect. (forall p p' (ev : eval_primitive (eval Σ) p p'), eval_primitive_ind _ (fun x y _ => P x y) _ _ ev -> - P (tPrim p) (tPrim p')) + P (tPrim p) (tPrim p')) -> + (forall t t' v (ev1 : eval Σ t (tLazy t')) (ev2 : eval Σ t' v), + P t (tLazy t') -> P t' v -> + P (tForce t) v) → (∀ t : term, atom Σ t → P t t) → ∀ t t0 : term, eval Σ t t0 → P t t0. Proof using Type. - intros ?????????????????????? H. + intros ??????????????????????? H. pose proof (p := @Fix_F { t : _ & { t0 : _ & eval Σ t t0 }}). specialize (p (MR lt (fun x => eval_depth x.π2.π2))). set(foo := existT _ t (existT _ t0 H) : { t : _ & { t0 : _ & eval Σ t t0 }}). diff --git a/erasure/theories/EWcbvEvalNamed.v b/erasure/theories/EWcbvEvalNamed.v index 02816f1d3..a3ac397de 100644 --- a/erasure/theories/EWcbvEvalNamed.v +++ b/erasure/theories/EWcbvEvalNamed.v @@ -36,7 +36,8 @@ Inductive value : Set := | vClos (na : ident) (b : term) (env : list (ident * value)) | vConstruct (ind : inductive) (c : nat) (args : list (value)) | vRecClos (b : list (ident * term)) (idx : nat) (env : list (ident * value)) -| vPrim (p : EPrimitive.prim_val value). +| vPrim (p : EPrimitive.prim_val value) +| vLazy (p : term) (env : list (ident * value)). Definition environment := list (ident * value). Definition add : ident -> value -> environment -> environment := fun (x : ident) (v : value) env => @@ -148,7 +149,14 @@ Section Wcbv. | eval_prim p p' : eval_primitive (eval Γ) p p' -> - eval Γ (tPrim p) (vPrim p'). + eval Γ (tPrim p) (vPrim p') + + | eval_lazy t : eval Γ (tLazy t) (vLazy t Γ) + | eval_force Γ' t t' v : + eval Γ t (vLazy t' Γ') -> + eval Γ' t' v -> + eval Γ (tForce t) v + . Program Definition eval_ind := λ (P : ∀ (Γ : environment) (t : term) (v : value), eval Γ t v → Type) (f : ∀ (Γ : environment) (na : string) (v : value) (e : lookup Γ na = Some v), @@ -247,7 +255,11 @@ Section Wcbv. P Γ (tConstruct ind c []) (vConstruct ind c []) (eval_construct_block_empty Γ ind c mdecl idecl cdecl e)) (f10 : ∀ (Γ : environment) (p : prim_val term) (p' : prim_val value) (ev : eval_primitive (eval Γ) p p') (evih : eval_primitive_ind (eval Γ) (P Γ) _ _ ev), - P Γ (tPrim p) (vPrim p') (eval_prim _ _ _ ev)), + P Γ (tPrim p) (vPrim p') (eval_prim _ _ _ ev)) + (f11 :∀ (Γ : environment) t, P Γ (tLazy t) (vLazy t Γ) (eval_lazy _ _)) + (f12 : ∀ Γ Γ' t t' v (ev0 : eval Γ t (vLazy t' Γ')) (ev1 : eval Γ' t' v), + P _ _ _ ev0 -> P _ _ _ ev1 -> + P _ _ _ (eval_force _ _ _ _ _ ev0 ev1)), fix F (Γ : environment) (t : term) (v : value) (e : eval Γ t v) {struct e} : P Γ t v e := match e as e0 in (eval _ t0 v0) return (P Γ t0 v0 e0) with | @eval_var _ na v0 e0 => f Γ na v0 e0 @@ -263,6 +275,8 @@ Section Wcbv. | @eval_construct_block _ ind c mdecl idecl cdecl args args' e0 l a => f8 Γ ind c mdecl idecl cdecl args args' e0 l a (map_All2_dep _ (F Γ) a) | @eval_construct_block_empty _ ind c mdecl idecl cdecl e0 => f9 Γ ind c mdecl idecl cdecl e0 | @eval_prim _ p p' ev => f10 Γ p p' ev (map_eval_primitive (P := P Γ) (F Γ) ev) + | @eval_lazy _ t => f11 Γ t + | @eval_force _ Γ' t t' v ev ev' => f12 _ _ _ _ _ ev ev' (F Γ _ _ ev) (F Γ' _ _ ev') end. End Wcbv. @@ -307,6 +321,7 @@ with represents_value : value -> term -> Set := | represents_value_tFix vfix i E mfix : All2_Set (fun v d => isLambda (snd v) × (List.rev (map fst vfix) ;;; E ⊩ snd v ~ d.(dbody))) vfix mfix -> represents_value (vRecClos vfix i E) (tFix mfix i) | represents_value_tPrim p p' : onPrims represents_value p p' -> represents_value (vPrim p) (tPrim p') +| represents_value_tLazy E t t' : [] ;;; E ⊩ t ~ t' -> represents_value (vLazy t E) (tLazy t') where "Γ ;;; E ⊩ s ~ t" := (represents Γ E s t). Derive Signature for represents represents_value. @@ -413,7 +428,9 @@ Program Definition represents_ind := P0 (vRecClos vfix i E) (tFix mfix i) (represents_value_tFix vfix i E mfix a)) (f13 : forall p p' (o : onPrims represents_value p p'), onPrims_dep _ P0 _ _ o -> - P0 (vPrim p) (tPrim p') (represents_value_tPrim p p' o)), + P0 (vPrim p) (tPrim p') (represents_value_tPrim p p' o)) + (f14 : forall E t t' (r : represents [] E t t'), P [] E t t' r -> + P0 (vLazy t E) (tLazy t') (represents_value_tLazy E t t' r)), fix F (l : list ident) (e : environment) (t t0 : term) (r : l;;; e ⊩ t ~ t0) {struct r} : P l e t t0 r := @@ -450,6 +467,7 @@ Program Definition represents_ind := | represents_value_tConstruct vs ts ind c a => f11 vs ts ind c a _ | represents_value_tFix vfix i E mfix a => f12 vfix i E mfix a _ | represents_value_tPrim p p' r => f13 p p' r (map_onPrims F0 r) + | represents_value_tLazy E t t' r => f14 E t t' r (F [] E t t' r) end for F). @@ -578,7 +596,9 @@ Program Definition represents_value_ind := P0 (vRecClos vfix i E) (tFix mfix i) (represents_value_tFix vfix i E mfix a)) (f13 : forall p p' (o : onPrims represents_value p p'), onPrims_dep _ P0 _ _ o -> - P0 (vPrim p) (tPrim p') (represents_value_tPrim p p' o)), + P0 (vPrim p) (tPrim p') (represents_value_tPrim p p' o)) + (f14 : forall E t t' (r : represents [] E t t'), P [] E t t' r -> + P0 (vLazy t E) (tLazy t') (represents_value_tLazy E t t' r)), fix F (l : list ident) (e : environment) (t t0 : term) @@ -617,6 +637,7 @@ Program Definition represents_value_ind := | represents_value_tConstruct vs ts ind c a => f11 vs ts ind c a _ | represents_value_tFix vfix i E mfix a => f12 vfix i E mfix a _ | represents_value_tPrim p p' r => f13 p p' r (map_onPrims F0 r) + | represents_value_tLazy E t t' r => f14 E t t' r (F [] E t t' r) end for F0). @@ -746,9 +767,10 @@ Definition rep_ind := (represents_value_tFix vfix i E mfix a)) (f13 : forall p p' (o : onPrims represents_value p p'), onPrims_dep _ P0 _ _ o -> P0 (vPrim p) (tPrim p') (represents_value_tPrim p p' o)) + f14 , - (represents_ind P P0 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 flazy fforce f10 f11 f12 f13, - represents_value_ind P P0 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 flazy fforce f10 f11 f12 f13)). + (represents_ind P P0 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 flazy fforce f10 f11 f12 f13 f14, + represents_value_ind P P0 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 flazy fforce f10 f11 f12 f13 f14)). Local Notation "'⊩' v ~ s" := (represents_value v s) (at level 50). Local Hint Constructors represents : core. @@ -1226,7 +1248,7 @@ Lemma unfolds_bound : (forall Γ E s t, Γ ;;; E ⊩ s ~ t -> closedn #|Γ| t) × (forall v s, ⊩ v ~ s -> closedn 0 s). Proof. - refine (rep_ind _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _); intros; cbn; rtoProp; eauto. + refine (rep_ind _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _); intros; cbn; rtoProp; eauto. - eapply Nat.ltb_lt, nth_error_Some. congruence. - eapply closed_upwards; eauto. lia. - solve_all. induction a; cbn in *; econstructor; firstorder. @@ -1515,7 +1537,8 @@ Inductive wf : value -> Type := All (fun t => sunny (map fst vfix ++ map fst E) (snd t)) vfix -> All (fun v => wf (snd v)) E -> wf (vRecClos vfix idx E) -| wf_vPrim p : primProp wf p -> wf (vPrim p). +| wf_vPrim p : primProp wf p -> wf (vPrim p) +| wf_vLazy E t : sunny (map fst E) t -> All (fun v => wf (snd v)) E -> wf (vLazy t E). Lemma declared_constant_Forall P Σ c decl : Forall (P ∘ snd) Σ -> @@ -1609,6 +1632,8 @@ Proof. - rtoProp; solve_all. Qed. +Derive NoConfusion for value. + Lemma eval_wf Σ E s v : Forall (fun d => match d.2 with ConstantDecl (Build_constant_body (Some d)) => sunny [] d | _ => true end) Σ -> All (fun x => wf (snd x)) E -> @@ -1723,6 +1748,8 @@ Proof. - cbn. econstructor. econstructor. - econstructor. solve_all. depelim evih; depelim Hsunny; try subst a0 a'; cbn; constructor; cbn in *; intuition solve_all. eapply All2_over_undep in a. solve_all. + - econstructor; eauto. + - eapply X in HE; eauto. depelim HE. eapply X0; eauto. Qed. Lemma eval_construct_All2 Σ E ind c args vs mdecl idecl cdecl : @@ -2154,6 +2181,12 @@ Proof. { clear -Hvs; induction Hvs; constructor; intuition eauto. } + constructor; eauto. eapply All2_All2_Set. { clear -Hvs; induction Hvs; constructor; intuition eauto. } + - invs Hrep; cbn in *; rtoProp. depelim H2. + apply s0 in H5 as [v' [reprev t1v]]; eauto. + depelim reprev. + eapply eval_wf in HΣ; tea. depelim HΣ. + eapply s1 in r as [v2 [reprv2 evv2]]; eauto. + exists v2. split => //. econstructor; eauto. - invs Hrep; cbn in *; try congruence; rtoProp. + econstructor. split; eauto. econstructor. eauto. + econstructor. split; eauto. econstructor. @@ -2170,8 +2203,8 @@ Proof. intros. cbn in *. destruct H5 as (([? []] & ?) & ?). rewrite app_nil_r in r. all: eauto. - - Unshelve. all: repeat econstructor. + + exists (vLazy t1 E). now split; econstructor. + Unshelve. all: repeat econstructor. Qed. Lemma concat_sing {X} l : diff --git a/erasure/theories/ErasureCorrectness.v b/erasure/theories/ErasureCorrectness.v index 4a12486ef..4dcabe930 100644 --- a/erasure/theories/ErasureCorrectness.v +++ b/erasure/theories/ErasureCorrectness.v @@ -40,6 +40,14 @@ Notation "Σ ⊢ s ⇓ t" := (EWcbvEval.eval Σ s t) (at level 50, s, t at next Import ssrbool. +Lemma erases_lazy Σ Γ t t' : Σ ;;; Γ |- t ⇝ℇ t' -> EAstUtils.isLazyApp t' -> False. +Proof. + rewrite /EAstUtils.isLazyApp /EAstUtils.head /EAstUtils.decompose_app. + generalize (@nil EAst.term) as l; intros l. + induction 1 in l |- *; cbn => //=. + eapply IHerases1. +Qed. + Lemma erases_correct (wfl := default_wcbv_flags) Σ t t' v Σ' : wf_ext Σ -> welltyped Σ [] t -> @@ -1150,6 +1158,10 @@ Proof. -- rewrite !negb_or in i. rtoProp; intuition auto. eapply is_PrimApp_erases in H8; tea. now move/negbTE: H8. + -- rewrite !negb_or in i. + rtoProp; intuition auto. + apply/negbTE. apply PCUICNormal.negb_is_true => isl. + eapply erases_lazy in H1; tea. + exists EAst.tBox. split. 2: now constructor; econstructor. econstructor. eapply inversion_App in Hty as [na [A [B [Hf [Ha _]]]]]; auto. diff --git a/erasure/theories/Typed/OptimizeCorrectness.v b/erasure/theories/Typed/OptimizeCorrectness.v index 92bc3b69e..a8f685dfc 100644 --- a/erasure/theories/Typed/OptimizeCorrectness.v +++ b/erasure/theories/Typed/OptimizeCorrectness.v @@ -2017,6 +2017,8 @@ Proof. - depelim X; auto. eapply All2_over_undep in a. eapply All2_Set_All2 in ev. solve_all. subst a0 a'; cbn in *. depelim exp_t; constructor; cbn in *; intuition eauto. solve_all. + - eapply IHev1 in exp_t. eapply IHev2 in exp_t. + eapply is_expanded_aux_upwards; tea. lia. Qed. Lemma valid_case_masks_lift ind c brs n k : @@ -2823,6 +2825,7 @@ Proof with auto with dearg. - depelim X; auto. eapply All2_over_undep in a. eapply All2_Set_All2 in ev. subst a0 a'; cbn -[test_prim] in *. solve_all. depelim H0; constructor; cbn; intuition eauto. solve_all. + - eapply IHev2. eapply eval_closed in ev1; tea. eapply IHev1; eauto. Qed. Lemma declared_constant_dearg Σ k cst : @@ -3452,22 +3455,22 @@ Section dearg. cbn in *; propify. rewrite dearg_single_masked by (now rewrite map_length). rewrite isLambda_mkApps, isFixApp_mkApps, isBox_mkApps, isConstructApp_mkApps;cbn in *. - rewrite isPrimApp_mkApps. - destruct with_guarded_fix;cbn;auto. + rewrite isPrimApp_mkApps, isLazyApp_mkApps in *. + destruct with_guarded_fix;cbn;intuition auto. now rewrite EOptimizePropDiscr.isFix_mkApps;cbn. * rewrite isLambda_mkApps, isFixApp_mkApps, isBox_mkApps, isConstructApp_mkApps in *;cbn in *. propify. destruct with_guarded_fix;cbn in *; intuition. * unfold dearg_case. destruct with_guarded_fix;cbn. - now rewrite isLambda_mkApps, isFixApp_mkApps, isBox_mkApps, isConstructApp_mkApps, isPrimApp_mkApps;cbn. - now rewrite isLambda_mkApps, isBox_mkApps, isConstructApp_mkApps, EOptimizePropDiscr.isFix_mkApps, isPrimApp_mkApps;cbn. + now rewrite isLambda_mkApps, isFixApp_mkApps, isBox_mkApps, isConstructApp_mkApps, isPrimApp_mkApps, isLazyApp_mkApps;cbn. + now rewrite isLambda_mkApps, isBox_mkApps, isConstructApp_mkApps, EOptimizePropDiscr.isFix_mkApps, isPrimApp_mkApps, isLazyApp_mkApps;cbn. * unfold dearg_proj. unfold dearg_case. destruct with_guarded_fix;cbn. - ** now rewrite isLambda_mkApps, isFixApp_mkApps, isBox_mkApps, isConstructApp_mkApps, isPrimApp_mkApps;cbn. - ** now rewrite isLambda_mkApps, isBox_mkApps, isConstructApp_mkApps, EOptimizePropDiscr.isFix_mkApps, isPrimApp_mkApps;cbn. - * rewrite !isLambda_mkApps, !isFixApp_mkApps, !EOptimizePropDiscr.isFix_mkApps, !isBox_mkApps, isConstructApp_mkApps, isPrimApp_mkApps in * + ** now rewrite isLambda_mkApps, isFixApp_mkApps, isBox_mkApps, isConstructApp_mkApps, isPrimApp_mkApps, isLazyApp_mkApps;cbn. + ** now rewrite isLambda_mkApps, isBox_mkApps, isConstructApp_mkApps, EOptimizePropDiscr.isFix_mkApps, isPrimApp_mkApps, isLazyApp_mkApps;cbn. + * rewrite !isLambda_mkApps, !isFixApp_mkApps, !EOptimizePropDiscr.isFix_mkApps, !isBox_mkApps, isConstructApp_mkApps, isPrimApp_mkApps, isLazyApp_mkApps in * by now destruct hd. rewrite map_length. destruct with_guarded_fix;cbn;auto; @@ -4971,6 +4974,9 @@ Proof. unshelve eapply IHb0; tea. cbn in deriv_len. lia. cbn in *; unfold test_array_model in *; subst a a'; cbn in *. unshelve eapply IH; tea; rtoProp; intuition eauto. lia. + + facts. econstructor. specialize (IH _ _ clos_t valid_t exp_t ev1). + cbn in IH. apply IH. lia. + now forward (IH v _ H2 H4 H6 ev2). + destruct t; cbn in *; try destruct y; try congruence; now constructor. Qed. End dearg_correct. diff --git a/erasure/theories/Typed/WcbvEvalAux.v b/erasure/theories/Typed/WcbvEvalAux.v index e24e82804..11b2d6413 100644 --- a/erasure/theories/Typed/WcbvEvalAux.v +++ b/erasure/theories/Typed/WcbvEvalAux.v @@ -307,6 +307,7 @@ Fixpoint deriv_length {Σ t v} (ev : Σ e⊢ t ⇓ v) : nat := S (deriv_length ev1 + deriv_length ev2 + deriv_length ev3) | eval_construct_block _ _ _ _ _ args _ _ _ _ _ => S #|args| | eval_prim _ _ ev => S (eval_prim_length (@deriv_length _) ev) + | eval_force _ _ _ ev ev' => S (deriv_length ev + deriv_length ev') end. Lemma deriv_length_min {Σ t v} (ev : Σ e⊢ t ⇓ v) :