forked from christophmschaefer/miluphcuda
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathporosity.cu
108 lines (101 loc) · 3.63 KB
/
porosity.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
/**
* @author Oliver Wandel and Christoph Schaefer [email protected]
*
* @section LICENSE
* Copyright (c) 2019 Christoph Schaefer
*
* This file is part of miluphcuda.
*
* miluphcuda is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* miluphcuda is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with miluphcuda. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "miluph.h"
#include "timeintegration.h"
#include "porosity.h"
#include "pressure.h"
#include "parameter.h"
#include "math.h"
#include "float.h"
#if PALPHA_POROSITY
__global__ void calculateDistensionChange()
{
/*
register int i, inc, matId;
inc = blockDim.x * gridDim.x;
for (i = threadIdx.x + blockIdx.x * blockDim.x; i < numParticles; i += inc) {
matId = p_rhs.materialId[i];
if (matEOS[matId] == EOS_TYPE_JUTZI || matEOS[matId] == EOS_TYPE_JUTZI_MURNAGHAN) {
if (p.alpha_jutzi[i] <= 1.0) {
p.dalphadt[i] = 0.0;
p.alpha_jutzi[i] = 1.0;
} else {
p.dalphadt[i] = ((p.dedt[i] * p.delpdele[i] + p.alpha_jutzi[i] * p.drhodt[i] * p.delpdelrho[i])
* p.dalphadp[i]) / (p.alpha_jutzi[i] + p.dalphadp[i] * (p.p[i] - p.rho[i] * p.delpdelrho[i]));
if (p.dalphadt[i] > 0.0) {
p.dalphadt[i] = 0.0;
}
}
} else {
p.dalphadt[i] = 0.0;
}
}
*/
}
#endif
#if SIRONO_POROSITY
#define MAXFLOAT DBL_MAX
__global__ void calculateCompressiveStrength()
{
register int i, inc, matId;
inc = blockDim.x * gridDim.x;
for (i = threadIdx.x + blockIdx.x * blockDim.x; i < numParticles; i += inc) {
matId = p_rhs.materialId[i];
if (matEOS[matId] == EOS_TYPE_SIRONO) {
double alpha = matporsirono_alpha[matId];
double pm = matporsirono_pm[matId];
double phimax = matporsirono_phimax[matId];
double phi0 = matporsirono_phi0[matId];
double delta = matporsirono_delta[matId];
double rho_s = matporsirono_rho_s[matId];
double phi = p.rho[i] / rho_s;
/* Using omni-sided_compression curve for compressive strength */
if (phi <= 0.125)
p.compressive_strength[i] = alpha * 31.45166;
if ((phi > 0.125) && (phi < 0.58))
p.compressive_strength[i] = alpha * pm * pow(((phimax - phi0) / (phimax - phi) - 1.0), delta * 2.302585);
if (phi >= 0.58)
p.compressive_strength[i] = MAXFLOAT;
} else {
p.compressive_strength[i] = MAXFLOAT;
}
}
}
__global__ void calculateTensileStrength()
{
register int i, inc, matId;
inc = blockDim.x * gridDim.x;
for (i = threadIdx.x + blockIdx.x * blockDim.x; i < numParticles; i += inc) {
matId = p_rhs.materialId[i];
if (matEOS[matId] == EOS_TYPE_SIRONO) {
double rho_s = matporsirono_rho_s[matId];
double phi = p.rho[i] / rho_s;
double tensStrength;
tensStrength = pow(10.0, (2.8 + 1.48 * phi));
p.tensile_strength[i] = tensStrength * (-1.0);
} else {
p.tensile_strength[i] = -MAXFLOAT;
}
}
}
#endif