-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathllava_inference.py
214 lines (188 loc) · 8.22 KB
/
llava_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os
import argparse
import torch
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
import requests
from PIL import Image
from io import BytesIO
from transformers import TextStreamer
from tasks import get_task_data
import json
from tqdm import tqdm
import copy
def load_image(image_file):
if image_file.startswith('http://') or image_file.startswith('https://'):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert('RGB')
else:
image = Image.open(image_file).convert('RGB')
return image
def _run_model_single_inference(model, tokenizer, image_processor, conv, args):
"""
conv: conversation object
args: inference configs
"""
# load image
if args.image_file is not None and args.image_file != "":
image = load_image(args.image_file)
else:
image = None
if image is not None:
# Similar operation in model_worker.py
image_tensor = process_images([image], image_processor, args)
if type(image_tensor) is list:
image_tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor]
else:
image_tensor = image_tensor.to(model.device, dtype=torch.float16)
else:
image_tensor = None
# add text prompt
inp = args.text_prompt
if image is not None:
# first message
if model.config.mm_use_im_start_end:
inp = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + inp
else:
inp = DEFAULT_IMAGE_TOKEN + '\n' + inp
conv.append_message(conv.roles[0], inp)
image = None
else:
# later messages
conv.append_message(conv.roles[0], inp)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
if image is not None:
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
else:
input_ids = tokenizer(prompt, return_tensors='pt').input_ids.cuda()
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
# streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=image_tensor,
do_sample=True if args.temperature > 0 else False,
temperature=args.temperature,
max_new_tokens=args.max_new_tokens,
# streamer=streamer,
use_cache=True,
stopping_criteria=[stopping_criteria])
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
conv.messages[-1][-1] = outputs
if args.debug:
log = {"prompt": prompt, "outputs": outputs}
print("\n", log, "\n")
return conv.dict()
def main(args):
# output dir
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
output_path = os.path.join(args.output_dir, 'log.json')
# Model
disable_torch_init()
# set up model
if args.model_name is None:
model_name = get_model_name_from_path(args.model_path)
else:
model_name = args.model_name
tokenizer, model, image_processor, context_len = load_pretrained_model(
args.model_path,
args.model_base,
model_name,
args.load_8bit,
args.load_4bit,
device=args.device
)
print("model loaded:", model_name)
# set up conversation
if 'llama-2' in model_name.lower():
conv_mode = "llava_llama_2"
elif "v1" in model_name.lower():
conv_mode = "llava_v1"
elif "mpt" in model_name.lower():
conv_mode = "mpt"
else:
conv_mode = "vicuna_v1"
if args.conv_mode is not None and conv_mode != args.conv_mode:
print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode))
else:
args.conv_mode = conv_mode
# do inference
all_logs = {
"configs": copy.deepcopy(args.__dict__),
"responses":[]
}
if args.run_task is not None:
task_data = get_task_data(args.run_task, args.dataset_name, prompt_version=args.version)
if args.k > 0:
print(f"take the first {args.k} instances")
task_data["images"] = task_data["images"][:args.k]
task_data["prompts"] = task_data["prompts"][:args.k]
task_data["info"] = task_data["info"][:args.k]
print("total num instances:", len(task_data["images"]))
for idx, img_p in tqdm(enumerate(task_data["images"])):
args.image_file = img_p
text = task_data["prompts"][idx]
if args.additional_prompt_suffix is not None:
text += " " + args.additional_prompt_suffix
args.text_prompt = text
instance_info = task_data["info"][idx]
conv = conv_templates[args.conv_mode].copy()
log = _run_model_single_inference(model, tokenizer, image_processor, conv, args)
log["task_data"] = {
"instance_info": instance_info,
"image_path": img_p,
"idx": idx
}
all_logs["responses"].append(log)
with open(output_path, 'w') as f:
json.dump(all_logs, f, indent=4)
# import pdb; pdb.set_trace()
else:
# run single inference
conv = conv_templates[args.conv_mode].copy()
if args.additional_prompt_suffix is not None:
args.text_prompt += " " + args.additional_prompt_suffix
log = _run_model_single_inference(model, tokenizer, image_processor, conv, args)
log["task_data"] = {"image_path": args.image_file}
all_logs["responses"].append(log)
with open(output_path, 'w') as f:
json.dump(all_logs, f, indent=4)
def _parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="liuhaotian/llava-v1.5-7b")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--model-name", type=str, default=None)
parser.add_argument("--text-prompt", type=str, required=False, default=None)
parser.add_argument("--additional_prompt_suffix", type=str, required=False, default=None)
parser.add_argument("--version", type=str, required=True, default=None)
parser.add_argument("--image-file", type=str, required=False, default=None)
parser.add_argument("--run-task", type=str, required=False, default=None)
parser.add_argument("--k", type=int, help="if take the first k instances", required=False, default=-1)
parser.add_argument("--dataset-name", type=str, required=False, default=None)
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--conv-mode", type=str, default=None)
parser.add_argument("--temperature", type=float, default=0.0)
parser.add_argument("--max-new-tokens", type=int, default=1024)
parser.add_argument("--load-8bit", action="store_true")
parser.add_argument("--load-4bit", action="store_true")
parser.add_argument("--debug", action="store_true")
parser.add_argument("--image-aspect-ratio", type=str, default='pad')
parser.add_argument("--output-dir", type=str, default=None)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = _parse_args()
if args.run_task is None:
assert args.text_prompt is not None, "ERROR: Please specify `--text-prompt`"
assert args.image_file is not None, "ERROR: Please specify `--image-file` when --run-task is not specified"
else:
assert args.dataset_name is not None, "ERROR: Please specify `--dataset-name` when --run-task is specified"
print("running task:", args.run_task)
main(args)