-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutil.cpp
269 lines (222 loc) · 8.45 KB
/
util.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
#include <GL/glew.h>
#include <glm/glm.hpp>
#include <GLFW/glfw3.h>
#include "util.h"
#include "GameObject.h"
#include "config.h"
#include "Player.h"
// Include AssImp
#include <assimp/Importer.hpp> // C++ importer interface
#include <assimp/scene.h> // Output data structure
#include <assimp/postprocess.h> // Post processing flags
extern std::vector<Player*> allPlayers;
float del = 2;
double lastTime = 0.0f;
int nbFrames = 0;
void FPS_init(float delay) {
lastTime = glfwGetTime();
nbFrames = 0;
del = delay;
}
void FPS_count() {
double currentTime = glfwGetTime();
nbFrames++;
if (currentTime - lastTime >= del) {
float t = (currentTime - lastTime)*1000.0 / double(nbFrames);
printf("%f ms/frame, %.1f frames / second\n", t, 1000.0f / t);
nbFrames = 0;
lastTime = glfwGetTime(); // TODO can we add the delay and save time?
}
}
void calculateNormals(std::vector<glm::vec3> & vertices,
std::vector<glm::vec3> & normals,
std::vector<unsigned short> & indices,
unsigned int faceCount) {
assert(indices.size() >= 3 * faceCount);
normals = std::vector<glm::vec3>(vertices.size());
for (unsigned int i = 0; i < faceCount; i++) {
auto i1 = indices[ i * 3 ];
auto i2 = indices[ i * 3 + 1];
auto i3 = indices[ i * 3 + 2];
auto facenormal = glm::cross(
vertices[i3] - vertices[i1],
vertices[i2] - vertices[i1]);
normals[i1] -= facenormal;
normals[i2] -= facenormal;
normals[i3] -= facenormal;
}
}
bool loadModelFromFile(const char * path,
std::vector<unsigned short> & indices,
std::vector<glm::vec3> & vertices,
std::vector<glm::vec2> & uvs,
std::vector<glm::vec3> & normals,
std::vector<glm::vec3> & tangents,
std::vector<glm::vec3> & bitangents) {
Assimp::Importer importer;
printf("Staring importer\n");
const aiScene* scene = importer.ReadFile(path, 0);
if (!scene) {
printf("%s\n", importer.GetErrorString());
getchar();
return false;
}
if (scene->mNumMeshes == 0) {
printf("No mesh found!\n");
return false;
}
printf("success!!\n");
const aiMesh* mesh = scene->mMeshes[0];
vertices.reserve(mesh->mNumVertices);
uvs.reserve(mesh->mNumVertices);
normals.reserve(mesh->mNumVertices);
indices.reserve(3 * mesh->mNumFaces);
printf("Reading %d Verticies\n", (int) mesh->mNumVertices);
for (unsigned int i = 0; i < mesh->mNumVertices; i++) {
aiVector3D pos = mesh->mVertices[i];
vertices.push_back(glm::vec3(pos.x, pos.y, pos.z));
}
if (mesh->HasTextureCoords(0)) {
printf("Reading %d UVs\n", mesh->mNumUVComponents[0]);
for (unsigned int i = 0; i < mesh->mNumVertices; i++) {
aiVector3D UVW = mesh->mTextureCoords[0][i];
uvs.push_back(glm::vec2(UVW.x, UVW.y));
}
} else {
uvs = std::vector<glm::vec2>(vertices.size());
}
if (mesh->HasFaces()) {
printf("Reading %d Faces as Indices\n", mesh->mNumFaces);
for (unsigned int i = 0; i < mesh->mNumFaces; i++) {
indices.push_back(mesh->mFaces[i].mIndices[0]);
indices.push_back(mesh->mFaces[i].mIndices[1]);
indices.push_back(mesh->mFaces[i].mIndices[2]);
}
}
if (mesh->HasNormals()) {
printf("Reading %d Normals\n", mesh->mNumVertices);
for (unsigned int i = 0; i < mesh->mNumVertices; i++) {
aiVector3D n = mesh->mNormals[i];
normals.push_back(glm::vec3(n.x, n.y, n.z));
}
} else {
printf("No Normals Found. Calculating manual\n");
calculateNormals(vertices, normals, indices, mesh->mNumFaces);
}
printf("Calculating tangents and bitangents\n");
tangents = std::vector<glm::vec3>(vertices.size());
bitangents = std::vector<glm::vec3>(vertices.size());
for (unsigned int i = 0; i < mesh->mNumFaces; i++) {
auto i1 = indices[ i * 3 ];
auto i2 = indices[ i * 3 + 1];
auto i3 = indices[ i * 3 + 2];
auto v1 = vertices[i1];
auto v2 = vertices[i2];
auto v3 = vertices[i3];
auto uv1 = uvs[i1];
auto uv2 = uvs[i2];
auto uv3 = uvs[i3];
auto d1 = v2 - v1;
auto d2 = v3 - v1;
auto dUV1 = uv2 - uv1;
auto dUV2 = uv3 - uv1;
float r = 1.0f / (dUV1.x * dUV2.y - dUV1.y * dUV2.x);
glm::vec3 tangent = (d1 * dUV2.y - d2 * dUV1.y) * r;
glm::vec3 bitangent = (d2 * dUV1.x - d1 * dUV2.x) * r;
tangents[i1] = tangent;
tangents[i2] = tangent;
tangents[i3] = tangent;
bitangents[i1] = bitangent;
bitangents[i2] = bitangent;
bitangents[i3] = bitangent;
}
return true;
}
glm::vec3 getNavigationEntry(glm::vec3 position) {
extern std::vector<unsigned char> navigationMap;
extern unsigned navigationMapHeight;
extern unsigned navigationMapWidth;
extern GameObject* map_ptr;
glm::vec3 relativePosition = position - (map_ptr->mModel.min * MAP_SCALING);
relativePosition /= (map_ptr->mModel.max - (map_ptr->mModel.min)) * MAP_SCALING;
glm::vec3 rgb(-1.0f);
if (relativePosition.x < 0 || relativePosition.x > 1
|| relativePosition.z < 0 || relativePosition.z > 1)return rgb;
unsigned int navPosition = ((int) (relativePosition.z * navigationMapHeight) * navigationMapWidth) + relativePosition.x * navigationMapWidth;
navPosition *= 4; // RGBA
rgb.r = navigationMap[navPosition];
rgb.g = navigationMap[navPosition + 1];
rgb.b = navigationMap[navPosition + 2];
rgb /= 255;
return rgb;
}
glm::vec3 circleCollision(glm::vec3 center, float radius, float samples, bool collideWithGreen,
bool collideWithPlayers, Player* self) {
glm::vec3 normal = glm::vec3(0);
for (float a = 0; a < 2 * glm::pi<float>(); a += glm::half_pi<float>() / samples) {
glm::vec3 offset = radius * glm::vec3(sin(a), 0, cos(a));
glm::vec3 navEntry = getNavigationEntry(center + offset);
if(collideWithPlayers){
for (auto p : allPlayers) {
if(p != self && glm::length(center - p->mModel.position) < PLAYER_RADIUS + radius) {
normal += 0.1f*(center - p->mModel.position);
}
}
}
if (navEntry.r == -1.0f || navEntry.r == 1.0f || (collideWithGreen && navEntry.g == 1.0f)) {
normal -= offset;
}
}
return normal;
}
glm::vec3 slideAlong(glm::vec3 a, glm::vec3 n) {
auto b = glm::vec3(-n.z, 0, n.x);
auto s = glm::dot(a, glm::normalize(b));
return b * s;
}
bool isColliding(GameObject o1, GameObject o2) {
return (glm::length(o1.mModel.position - o2.mModel.position) < o1.radius + o2.radius);
}
glm::vec3 moveTowards(glm::vec3 pos, glm::vec3 target, float minspeed) {
glm::vec3 dif = pos - target;
glm::vec3 moveTo = target + glm::normalize(dif) * CHAIN_DISTANCE;
// if we can't move straight forwards, check for a better place
glm::vec3 navEntry = getNavigationEntry(moveTo);
if (navEntry.r == -1.0f || navEntry.r == 1.0f) {
std::vector<glm::vec3> possiblePlaces;
for (float a = 0; a < 2 * glm::pi<float>(); a += glm::half_pi<float>() / 4.0f) {
glm::vec3 offset = CHAIN_DISTANCE * glm::vec3(sin(a), 0, cos(a));
glm::vec3 navEntry = getNavigationEntry(target + offset);
if (!(navEntry.r == -1.0f || navEntry.r == 1.0f)) {
possiblePlaces.push_back(target + offset);
}
}
// we can't be anywhere? just move forwards!
if (possiblePlaces.size() == 0) {
possiblePlaces.push_back(target + glm::normalize(dif) * CHAIN_DISTANCE);
}
glm::vec3 nearest = moveTo;
float bestDist = 1337.0f;
for (auto v : possiblePlaces) {
float newDist = glm::length(pos - v);
if (newDist < bestDist) {
nearest = v;
bestDist = newDist;
}
}
return nearest;
} else {
// just move straight forwards
float speed;
if (glm::length(dif) > CHAIN_DISTANCE) {
speed = glm::length(dif) - CHAIN_DISTANCE;
} else {
speed = minspeed;
}
return pos + speed * glm::normalize(-dif);
printf("%f\n", glm::length(pos - target) / CHAIN_DISTANCE);
}
}