-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathMain.py
68 lines (64 loc) · 4.55 KB
/
Main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from ops import *
import scipy.misc as misc
from PIL import Image
def DeepImageAnalogy(img, ref, alpha_L, patch_size, search_radius, itr):
#Preprocessing
A = tf.placeholder(tf.float32, [None, None, None, 3])
B_prime = tf.placeholder(tf.float32, [None, None, None, 3])
F_A, F_B_prime = preprocessing(A, B_prime)
sess = tf.Session()
[F_A, F_B_prime] = sess.run([F_A, F_B_prime], feed_dict={A: img, B_prime: ref})
F_A_L = F_A["conv5_1"]
F_A_prime_L = F_A_L * 1.
F_B_prime_L = F_B_prime["conv5_1"]
F_B_L = F_B_prime_L * 1.
#Iteration
layers = [ "conv1_1", "conv2_1", "conv3_1", "conv4_1", "conv5_1"]
phi_a2b_L = None
phi_b2a_L = None
for layer in range(layers.__len__()-1, -1, -1):
print("Layer: conv%d_1" % (layer + 1))
#NNF search
if layer == 4:
phi_a2b_L, nnd_a2b_L = initialise_nnf(F_A_L[0, :, :, :], F_A_prime_L[0, :, :, :], F_B_L[0, :, :, :], F_B_prime_L[0, :, :, :], phi_a2b_L, patch_size[layer], is_init=False)
phi_b2a_L, nnd_b2a_L = initialise_nnf(F_B_L[0, :, :, :], F_B_prime_L[0, :, :, :], F_A_L[0, :, :, :], F_A_prime_L[0, :, :, :], phi_b2a_L, patch_size[layer], is_init=False)
phi_a2b_L, nnd_a2b_L = propagate(F_A_L[0, :, :, :], F_A_prime_L[0, :, :, :], F_B_L[0, :, :, :], F_B_prime_L[0, :, :, :], phi_a2b_L, nnd_a2b_L, iters=itr, rand_search_radius=search_radius[layer], patch_size=patch_size[layer])
phi_b2a_L, nnd_b2a_L = propagate(F_B_L[0, :, :, :], F_B_prime_L[0, :, :, :], F_A_L[0, :, :, :], F_A_prime_L[0, :, :, :], phi_b2a_L, nnd_b2a_L, iters=itr, rand_search_radius=search_radius[layer], patch_size=patch_size[layer])
else:
_, nnd_a2b_L = initialise_nnf(F_A_L[0, :, :, :], F_A_prime_L[0, :, :, :], F_B_L[0, :, :, :], F_B_prime_L[0, :, :, :], phi_a2b_L, patch_size[layer], is_init=True)
_, nnd_b2a_L = initialise_nnf(F_B_L[0, :, :, :], F_B_prime_L[0, :, :, :], F_A_L[0, :, :, :], F_A_prime_L[0, :, :, :], phi_b2a_L, patch_size[layer], is_init=True)
phi_a2b_L, nnd_a2b_L = propagate(F_A_L[0, :, :, :], F_A_prime_L[0, :, :, :], F_B_L[0, :, :, :], F_B_prime_L[0, :, :, :], phi_a2b_L, nnd_a2b_L, iters=itr, rand_search_radius=search_radius[layer], patch_size=patch_size[layer])
phi_b2a_L, nnd_b2a_L = propagate(F_B_L[0, :, :, :], F_B_prime_L[0, :, :, :], F_A_L[0, :, :, :], F_A_prime_L[0, :, :, :], phi_b2a_L, nnd_b2a_L, iters=itr, rand_search_radius=search_radius[layer], patch_size=patch_size[layer])
if layer > 0:
#Reconstruction
Warped_F_B_prime_L = reconstruct_image(F_B_prime_L[0, :, :, :], phi_a2b_L)
R_L_1 = Deconvolve(sess, str(layer) + "a", layer, Warped_F_B_prime_L)
W_L_1 = get_W_L_1(F_A[layers[layer - 1]], alpha_L[layer-1])
F_A_prime_L_1 = F_A[layers[layer - 1]] * W_L_1 + R_L_1 * (1 - W_L_1)
Warped_F_A_L = reconstruct_image(F_A_L[0, :, :, :], phi_b2a_L)
R_L_1 = Deconvolve(sess, str(layer) + "b", layer, Warped_F_A_L)
W_L_1 = get_W_L_1(F_B_prime[layers[layer - 1]], alpha_L[layer - 1])
F_B_L_1 = F_B_prime[layers[layer - 1]] * W_L_1 + R_L_1 * (1 - W_L_1)
F_A_prime_L = F_A_prime_L_1
F_B_L = F_B_L_1
F_A_L = F_A[layers[layer-1]]
F_B_prime_L = F_B_prime[layers[layer-1]]
#NNF upsampling
phi_a2b_L = upsample_nnf(phi_a2b_L)
phi_b2a_L = upsample_nnf(phi_b2a_L)
return phi_a2b_L, phi_b2a_L
if __name__ == "__main__":
A = misc.imresize(np.array(Image.open("./IMAGES/girl_A.jpg")), [224, 224])[np.newaxis, :, :, :]
B_prime = misc.imresize(np.array(Image.open("./IMAGES/girl_B_prime.jpg")), [224, 224])[np.newaxis, :, :, :]
# B_prime = np.dstack((B_prime, B_prime, B_prime))[np.newaxis, :, :, :]
alpha_L = [0.1, 0.6, 0.7, 0.8] # start: [0.1, 0.6, 0.7, 0.8] +-2
patch_size = [5, 5, 3, 3, 3]
search_radius = [4, 4, 6, 6, 6]
itrs = 5
phi_a2b, phi_b2a = DeepImageAnalogy(A, B_prime, alpha_L, patch_size, search_radius, itrs)
Image.fromarray(np.uint8(reconstruct_image(B_prime[0, :, :, :], phi_a2b))).show()#save('./a2b.jpg')
Image.fromarray(np.uint8(reconstruct_image(A[0, :, :, :], phi_b2a))).show()#save('./b2a.jpg')
Image.fromarray(np.uint8(reconstruct_image(B_prime[0, :, :, :], phi_a2b))).save('./a2b.jpg')
Image.fromarray(np.uint8(reconstruct_image(A[0, :, :, :], phi_b2a))).save('./b2a.jpg')
Image.fromarray(np.uint8(A[0, :, :, :])).save('./A.jpg')
Image.fromarray(np.uint8(B_prime[0, :, :, :])).save('./B_prime.jpg')