-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcfg_dev.yml
50 lines (39 loc) · 1.66 KB
/
cfg_dev.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
maintainer: Mohamed Amine Dhiab
device: cpu #device on which you want to train the data, use cpu if no nvidia cuda driver is available.
run_name: dev_densenet_3
job_type: dev
img_dir: ./data/raw/image # directory to image data
mask_dir: ./data/raw/image_mask # directory to image masks
label_dir: ./data/raw/labels # directory to image labels
pipeline:
- name: process # process pipe used to prepare the data
train_fraction: 0.9 # proportion of the data to be used for training
validation_fraction: 0.1 # proportion of the data to be used for validation
preprocess :
crop : # crop your data to create square images using the result, you need to know the minimum height / width
type : all # cut the whole image into smaller cropped images of size (height x width)
height : 430
width : 430
is_augment: true # augmentation will be executed if this is true
- name: train # train pipe used to training the model
train_cfg:
with_augmentation: true # if set to true, data in the '.../augmented' folder will be used for training
img_size: (384,384)
epochs: 10
batch_size: 8
learning_rate: 0.0003
lr_decay: 0.1
lamda: 1
optimizer: adam
attention_threshold: 0.1
save_path: ./weights/model_densenet_1.pth
# - name: test # test pipe used to run inference
# test_data: ./data/test.tsv
# test_cfg:
# img_size: (512,512)
# batch_size: 2
# weights: ./weights/model_densenet_1.pth
with_wandb: false
multi_gpus: false # not supported yet
model_cfg: densenet.yml
random_seed: 2022