forked from SleepyBag/Statistical-Learning-Methods
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBinaryLogisticRegression.py
77 lines (67 loc) · 2.72 KB
/
BinaryLogisticRegression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
from matplotlib import pyplot as plt
import numpy as np
import sys
import os
from pathlib import Path
sys.path.append(str(Path(os.path.abspath(__file__)).parent.parent))
from utils import binary_cross_entropy, sigmoid, wbline
class LogisticRegression:
def __init__(self, lr=1e-4, max_steps=1000, verbose=True):
self.lr = lr
self.max_steps = max_steps
self.verbose = verbose
def fit(self, X, Y):
"""
X: of shape [data-size, feature-size]
Y: of shape [data-size]
"""
self.feature_size = X.shape[-1]
# w of shape [feature-size]
self.w = np.random.rand(self.feature_size)
# b of shape [1]
self.b = np.random.rand(1)
for step in range(self.max_steps):
# pred of shape [data-size]
pred = self._predict(X)
# Bias gradient of shape [data-size]
gradient_b = Y - pred
# Weight gradient of shape [data-size, feature-size]
gradient_w = gradient_b[:, None] * X
# get mean of gradient across all data
gradient_b = gradient_b.mean(axis=0)
gradient_w = gradient_w.mean(axis=0)
self.w += gradient_w
self.b += gradient_b
if self.verbose:
loss = binary_cross_entropy(pred, Y)
print(f"Step {step}, Loss is {loss}...")
def _predict(self, X):
logit = self.w @ X.transpose() + self.b
p = sigmoid(logit)
return p
def predict(self, X):
p = self._predict(X)
Y = (p > .5).astype(int)
return Y
if __name__ == "__main__":
def demonstrate(X, Y, desc):
logistic_regression = LogisticRegression(verbose=True)
logistic_regression.fit(X, Y)
# plot
plt.title(desc)
plt.scatter(X[:, 0], X[:, 1], c=Y)
wbline(logistic_regression.w, logistic_regression.b)
plt.show()
# -------------------------- Example 1 ----------------------------------------
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
Y = np.array([1, 1, 0, 0])
demonstrate(X, Y, "Example 1")
# -------------------------- Example 2 ----------------------------------------
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
Y = np.array([1, 0, 0, 1])
demonstrate(X, Y, "Example 2: Logistic Regression still cannot solve a simple XOR problem")
# -------------------------- Example 3 ----------------------------------------
X = np.concatenate([np.random.normal([0, 1], size=[40, 2]),
np.random.normal([1, 0], size=[40, 2])])
Y = np.concatenate([np.ones(40), np.zeros(40)])
demonstrate(X, Y, "Example 3: Logistic Regression is suitable for tasks that are not strictly linear separable")