forked from lvsn/deeptracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_sequence.py
137 lines (118 loc) · 5.22 KB
/
test_sequence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from deeptracking.data.dataset_utils import angle_distance, compute_axis
from deeptracking.utils.argumentparser import ArgumentParser
from deeptracking.data.dataset import Dataset
from deeptracking.tracker.deeptracker import DeepTracker
import sys
import json
import time
import cv2
import numpy as np
from deeptracking.utils.data_logger import DataLogger
import os
from test_sensor import draw_debug
ESCAPE_KEY = 27
def log_pose_difference(prediction, ground_truth, logger):
prediction_params = prediction.inverse().to_parameters(isDegree=True)
ground_truth_params = ground_truth.inverse().to_parameters(isDegree=True)
difference = np.zeros(6)
for j in range(3):
difference[j] = abs(prediction_params[j] - ground_truth_params[j])
difference[j + 3] = abs(angle_distance(prediction_params[j + 3], ground_truth_params[j + 3]))
logger.add_row(logger.get_dataframes_id()[0], difference)
if __name__ == '__main__':
args = ArgumentParser(sys.argv[1:])
if args.help:
args.print_help()
sys.exit(1)
with open(args.config_file) as data_file:
data = json.load(data_file)
# Populate important data from config file
OUTPUT_PATH = data["output_path"]
VIDEO_PATH = data["video_path"]
MODEL_PATH = data["model_path"]
model_split_path = MODEL_PATH.split(os.sep)
model_name = model_split_path[-1]
model_folder = os.sep.join(model_split_path[:-1])
MODELS_3D = data["models"]
SHADER_PATH = data["shader_path"]
CLOSED_LOOP_ITERATION = int(data["closed_loop_iteration"])
SAVE_VIDEO = data["save_video"] == "True"
SAVE_FRAMES = data["save_frames"] == "True"
SHOW_AXIS = data["show_axis"] == "True"
OBJECT_WIDTH = int(MODELS_3D[0]["object_width"])
MODEL_3D_PATH = MODELS_3D[0]["model_path"]
try:
MODEL_3D_AO_PATH = MODELS_3D[0]["ambiant_occlusion_model"]
except KeyError:
MODEL_3D_AO_PATH = None
USE_SENSOR = data["use_sensor"] == "True"
RESET_FREQUENCY = int(data["reset_frequency"])
frame_download_path = None
video_data = Dataset(VIDEO_PATH)
if not video_data.load():
print("[ERROR] Error while loading video...")
sys.exit(-1)
frame_download_path = video_data.path
# Makes the list a generator for compatibility with sensor's generator
gen = lambda alist: [(yield i) for i in alist]
frame_generator = gen(video_data.data_pose)
camera = video_data.camera
detection_mode = False
debug_info = None
tracker = DeepTracker(camera, data["model_file"], OBJECT_WIDTH)
tracker.load(MODEL_PATH, MODEL_3D_PATH, MODEL_3D_AO_PATH, SHADER_PATH)
tracker.print()
# Frames from the generator are in camera coordinate
previous_frame, previous_pose = next(frame_generator)
previous_rgb, previous_depth = previous_frame.get_rgb_depth(frame_download_path)
log_folder = os.path.join(model_folder, "scores")
if SAVE_VIDEO:
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter(os.path.join(log_folder, "video.avi"), fourcc, 30.0, (camera.width, camera.height))
data_logger = DataLogger()
data_logger.create_dataframe("{}_eval".format(model_name), ("Tx", "Ty", "Tz", "Rx", "Ry", "Rz"))
for i, (current_frame, ground_truth_pose) in enumerate(frame_generator):
# get actual frame
current_rgb, current_depth = current_frame.get_rgb_depth(frame_download_path)
screen = current_rgb.copy()
if RESET_FREQUENCY != 0 and i % RESET_FREQUENCY == 0:
previous_pose = ground_truth_pose
else:
# process pose estimation of current frame given last pose
start_time = time.time()
if detection_mode:
previous_pose = ground_truth_pose
else:
for j in range(CLOSED_LOOP_ITERATION):
predicted_pose, debug_info = tracker.estimate_current_pose(previous_pose, current_rgb, current_depth, debug=args.verbose)
previous_pose = predicted_pose
print("[{}]Estimation processing time : {}".format(i, time.time() - start_time))
if not USE_SENSOR:
log_pose_difference(predicted_pose.inverse(), ground_truth_pose.inverse(), data_logger)
if SHOW_AXIS:
debug_info = None
draw_debug(screen, previous_pose, ground_truth_pose, tracker, 1, debug_info)
previous_rgb = current_rgb
cv2.imshow("Debug", screen[:, :, ::-1])
if SAVE_VIDEO:
out.write(screen[:, :, ::-1])
if SAVE_FRAMES:
frame_folder = os.path.join(log_folder, "frames")
if not os.path.exists(frame_folder):
os.mkdir(frame_folder)
cv2.imwrite(os.path.join(frame_folder, "{}.jpg".format(i)), screen[:, :, ::-1])
key = cv2.waitKey(1)
key_chr = chr(key & 255)
if key != -1:
print("pressed key id : {}, char : [{}]".format(key, key_chr))
if key_chr == " ":
print("Reset at frame : {}".format(i))
previous_pose = ground_truth_pose
detection_mode = not detection_mode
if key == ESCAPE_KEY:
break
if not os.path.exists(log_folder):
os.mkdir(log_folder)
data_logger.save(log_folder)
if SAVE_VIDEO:
out.release()